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The soil is assumed to be a horizontally layered viscoelastic medium over a rigid base. A semi-
analytical method is used to calculate the Green functions for line loads in the frequency domain.
The displacements in the soil are then obtained by spatial convolution and Fourier transforms
from the frequency to the time domain. The influence of significant parameters is studied for a
homogeneous layer. Maximum response is obtained when the air pressure wave velocity equals
the Rayleigh wave velocity in the soil. The response spectra computed for an actual soil profile,
which is subjected to an air pressure wave from a deflagration-type explosion, show predominant
response at frequencies, which are significantly higher than those of earthquake motion.

1. INTRODUCTION

In most problems of soil dynamics loads vary in time but
do not change their spatial position. A problem in which
the spatial motion of the load is important, is that of an air
pressure wave which results from the explosion of a gas
cloud and propagates over the surface of the ground. A
similar loading is produced by sonic booms. In the
following, ground vibrations caused by propagating air
pressure waves are investigated. They are of interest in the
design of underground and surface structures with high
safety requirements.

A simple analysis approach to the problem of a moving
air pressure load is based on the assumption of one-
dimensional wave propagation in soil!. Spatial wave
reflections and refractions at soil layer interfaces as well as
the generation of surface waves are neglected. In more
sophisticated analyses the soil has been considered as an
elastic half-space. An early solution for arbitrarily moving
loads on a half-space under plane strain conditions was
obtained through a Fourier transform by Sneddon? in
form of an integral. Cinelli and Fugelso® evaluated this
integral for the case of a moving load which consists of a
sudden rise and an exponential decay. They also derived
integral solutions for the corresponding axisymmetric
case. Cole and Huth® have presented formulae and
graphs for line loads moving on an elastic half-space.
Results for a line load of finite length have been given by
Baron et al.®. In all these studies it was assumed that the
load travels with constant velocity, so that a steady
displacement pattern appears with respect to an observer
who moves along with the load. Formal solutions for
axisymmetric and point loads moving with variable
velocity have been derived by Miles® and Payton’,
respectively. The results are given as integrals which
require a numerical solution.

With the development of powerful computers, purely
numerical methods have become attractive. They make it
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possible to simulate more closely the actual site
conditions and nonlinear soil behavior. Analyses for
plane and axisymmetric air pressure loads on a layered
soil with nonlinear behaviour have been carried out by
Rischbieter® using a finite difference method. Nelson has
studied the response of a structure caused by a moving air
pressure load employing a finite element method®*'.
However, the analyses of two-dimensional problems by
purely numerical methods requires a large number of
elements and therefore a major computational effort.

In order to reduce the numerical effort, a semi-
analytical method is used in the present study. A
deflagration-type air pressure load with a constant peak
amplitude and a plane wave front is considered. The soil is
assumed to be a layered viscoelastic medium over a rigid
base. Results are presented for the case of a homogeneous
soil layer in dimensionless form and the response of an
actual site with layered soil is studied.

2. METHOD OF ANALYSIS

The computation of the soil motion is based on a line Joad
solution (Green function) in the frequency domain. Its
derivation is outlined first. Then the displacements
caused by a moving air pressure wave are computed by
spatial convolution of the Green function and the load
distribution. Finally, the time history response is
obtained by a Fourier transform. The transform requires
only a small computational effort if the load time-history
is independent of the space variable except for a phase
shift and a scaling function.

Any time-dependent function f(t) (satisfying certain
conditions'®) with a finite period T can be transformed
into the frequency domain:
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and

f(r)=}-j Fie™ s=,,.-2-1,012,...
5 (1)

In the following, all variables for displacements and loads
refer to the frequency domain.

The motion in a medium under plane strain conditions
may be expressed by

u(x,z) i XN | i

{-«x. z)} 25 {Z,(z)} i ol
where u and w denote the displacements in the horizontal
x- and vertical z-direction, respectively. For a load p(x)
(c.g., at z=0), the functions X (z) and Z(z) might be
obtained by a spatial Fourier transform from the x-
domain into the k -domain®. Equation (2) then defines the
discrete inverse Fourier transformation into the x-
domain. If the problem of freely propagating waves in the
layered medium over a fixed base is considered (i.e., no
external loads act on the medium), X (z), Z(z) and k;are
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Fig. 1. Soil model
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obtained as solution of an eigenvalue problem?é. The
summation in equation (2) denotes the superposition of
the eigenvectors which are multiplied by participation
factors. The participation factors can be determined from
boundary conditions for stresses or displacements at a
vertical line, e.g., at x=0. The method is called semi-
analytic as it uses approximate solutions in the vertical
direction and analytical solutions in the horizontal
direction (see appendix). It is empioyed in this study.
For a vertical line load p, acting at x=x, on the surface
of the layered medium, Fig. 1, the horizontal and vertical
displacements u and w of the layer interfaces at x=x_are:

d=g(xy—x,) p; i={§} &)
in which
12 (sign(e.—x)X,
(3a)
and
§me sl (3b)

Z,,=clement of Z, refering to the soil surface (z=0).
e vectors X ;, Z, and the parameters k; are obtained
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from the solution of the eigenvalue problem'!4. X; and
Z; denote the horizontal and vertical displacement,
respectively, and k; the corresponding eigenvalue in the
Jjth mode. The elements of the vectors refer to the layer
interfaces, where in each layer a linear variation of the
displacements over the height is assumed. The
normalization of the eigenvectors is understood as in Refs
13 and 14. The summation is performed over 2*n, modes,
where n, is the number of layers.

Instead of a line load, a uniform strip load p=p/Ax
from x=x,—Ax/2 to x=x,+Ax/2 may be considered.
Integration of eguations (3a,b) yields in this case with
k=k;-Ax/2

i 2
§j=§'l'{l"'£'e-i}x'-xlt(l _K_) -e_ﬁ;“-‘-ﬂ
K 6

for m#1 (4a)
and

j=i-(e""’—l)=:(l—irc) form=! (4b)
K 2

Equations (3) (with =5~ Ax) and (3a) remain valid.

For loads applied throughout the x-domain, the
displacements at x=x, are given by the spatial
convolution integral

é(x..)mr 9% — ) p(x)-dx 5)

The discretized finite form of equation (S5) for a, equal
intervals Ax is'®:

m—1

um-Ax)= ) g(m—1)-Ax) p(- Ax) ©)

1=0

The Fourier transformation of the pressure time-
history into the frequency domain would generally be
performed for each coordinate x,=I*Ax. However, if the
time-histories at different coordinates x, are similar, i.e.,
they differ only by a phase lag t,(x,) and by an
amplification function a(x;), the transformation needs to
be performed only for one location. Letting p(0) denote
the Fourier transform of the pressure time history at
x=0, the transform at x=x, is

p(x)=al(x;) p(0)-e~ === )]

Further computational savings are possible for constant
propagation velocity ¢. Then the lag time is t,(x)=
I- Ax/c, and the evaluation of the exponential function in
equation (7) can be reduced to repeated multiplications

e-b.l.(-td={e-im.&xf:)l (8)

The Fourier transformation of the load time-histories are
performed over a finite period T for a finite number of
points n,. As the finite transform implies periodic loading
the period T should be large enough to allow for
attenuation of the response at the observation points and
to let the air pressure wave sweep across the discretized x-
region. The latter conditions leads for comnstant c¢ to
TZ2n. Ax/c.

The spatial discretization is extended to 2 large enough
distance from the observation points so that a-

compression wave (P-wave) genmerated at the spatial
break-off-point does not reach the observation points
during the time of interest.

The number of time steps n, and hence the highest
frequency f=n,/(2*T) considered in the analysis should .
be large enough to represent the air pressure time-history
by the Fourier series with sufficient accuracy.

In the present application it is convenient to use the
time rates rather than the basic variables in equations (5)
and (6); i.e., the particle velocities i,w and the loading rate
p instead of the displacements u,w and the loading p,
repectively. For two typical time-histories the Fourier
transformations of the loading rates are given in Table 1.
The first load function is representative for a deflagration;
the second corresponds to a detonation.

3. HOMOGENEOUS LAYER

The motion of a homogeneous viscoelastic soil layer
subjected to a deflagration-type air pressure wave is
studied. At any point on the surface, the air pressure rises
linearly from zero to p during the rise time ¢, after the
arrival of the air pressure wave, and remains constant
thereafter. The slow decrease of the pressure after the
maximum load in actual deflagrations is not considered
here, since it affects only the low frequency content and
hardly influences peak velocities and peak accelerations
of the soil motion. The air pressure wave propagates
simultaneously in the positive and negative x-direction,
see Fig. 2.

The motion of the layer depends on the dimensionless
parameters

c/v, ratio of the air pressure propagation
velocity ¢ to the P-wave velocity v,=

v (A+2G)/p with Ai=Lame-constant,

G =shear modulus and p=density

tr:v,- * ratio of the load rise time to the travel
h time of a P-wave over the height h
v=——j—— Poisson ratio
- (46G)
B hysteretic damping ratio

In the example, v=0.3 and f=0.05. The total height h
of the layer is discretized into 25 sublayers (5*0.025h,
10*0.0375h, 10%*0.05h, from top to bottom). In the
horizontal direction the ground surface is discretized
using intervals of Ax=0.05*h. The time-history is
described by 256 time steps At=0.39%h/v.

The ground motion is presented in Figs 3 to 8 in terms
of dimensionless displacements, velocities and
accelerations. The scaling factors are -

___Po'h
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ey (9b)
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respectively. The value w, represents the displacement of
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Fig. 3. Particle motions for different air pressure wave velocities, z=0, x/h=2.0, 7,=1.0

a homogeneous layer under a static uniform load Po; ¥y
and g, are the maximum velocity and acceleration,
respectively, in a homogeneous halfspace loaded by a
uniform pressure which rises linearly during the time ¢,
from zero to p,.

The time-histories of the motions at the soil surface are

shown in Fig. 3 for different wave velocity ratios cfv,..

They refer to a line x=2%h and the rise time ratio T,=1.

For low air pressure wave velocities (c/v,=0.25)
considerable motion occurs before the air pressure wave
arrives, because the surface waves in the ground
Propagate faster than the air pressure wave. The

acceleration time history is characterized by a high
frequency content and few significant peaks. This result is
qualitatively confirmed by measurements of ground
vibrations during test explosions near the centre of
explosion®®.

For the ratio ¢/v,=0.5 the air pressure wave velocity
nearly equals the Rayleigh wave velocity in the soil (~ in
an elastic balf-space with v=0.3 the Rayleigh wave
velocity is vgx 0.5v,)!". Large amplitudes occur only after
the arrival of the air pressure wave. The amplitudes are
considerably higher and the time-histories show stronger
oscillations than in the case c/v,=0.25.
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Fig. 4. Vertical peak velocity and acceleration versus the
wave velocity ratio ¢/v,, T, =10, f=57

For high air pressure wave velocities, ¢/v,=1, these
vibrations are very pronounced. If the air pressure wave
velocity is greater than the compression wave velocity in
soil, the soil motion cannot start before the arrival of the
air pressure wave. The time-histories reveal the
dominance of vertically propagating compression waves
which are reflected at the rigid base and at the surface and
attenuate with time due to material damping. The
predominant frequency is the first resonant frequency of
the soil layer, i.e., f=0,/(4h). Thus, the response can be
well approximated by one<dimensional wave
propagation theory when the air pressure wave velocity is
larger than the compression wave velocity in the ground.
For a homogeneous layer on a rigid base one obtains the
vertical displacement at the surface in the frequency
domain as:

w=wo-tan(z)/z - p/po (10)
with

1=, k- /p/((i+2G)- (1 +28i) (10m)

The velocity of the ground surface motion as computed
by the one-dimensional theory (r,/c=x) for 7,=1 is
shown in Fig. 3 vs. time. The time-history is similar to
that computed by the two-dimensional theory and peak
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Fig. 5. Particle velocities for loading rate t,=3.0 and
different air pressure wave velocities, z=0, x/h=2.0
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response values are approximately the same. The one-
dimensional results indicate less damping; there is no
radiation damping in this case. The maximum velodity is
pot larger than the peak value in an elastic half-space
subjected to a monotonically increasing load, equation
(9b); wave reflections at the layer base reduce the peak
v

Fig. 4:homlhed'ectdc/v,onthcp=kvalua As
long as c is smaller than v, the particle velocities increase
with ¢/v,. When the air pressure wave velocity c equals the
Rnyle:gf wave velocity pg=0.5°p,, the ground motion
hsas a peak. For a soil without mtemal damping and for
x—» 0 the response at ¢=p, would tend to infinity.

The ground motion depends also on the load rise time.
For a rise time ratio ¢,= 3 particle velocity time-histories
are shown in Fig. 5. They are similar to those for r,=1in
Fig. 3, but their amplitudes are considerably less. Peak
velocities and accelerations decrease with increasing rise
time (compare Figs 4 and 6). The reduction of peak
velocity is caused by wave reflection at the rigid base
during the load rise time and the reduction of peak
acceleration is due to the decreasing loading rate, see
scaling factor a, in equation (8).

The variation of the ground motion with distance from
the centre of explosion is demonstrated for a case with low
air pressure wave velocity ratio (c/v,=0.25) in Fig. 7.

Analysis of ground motion: H. Werkle and G. Waas
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Near the centre of explosion the high velocity peak caused
by the rise of the air pressure is followed by oscillations at
the resonant frequency of the layer. At greater distance
(x/h=5) these oscillations attenuate more rapidly, and
the velocity peak is preceded by motions due to ground
waves which arrive before the air pressure wave.

The ground waves are generalized Rayleigh waves
which consist of interfering P- and vertically polarized S-
waves. Due to the rigid base their velocity varies with
frequency. However, at the higher frequencies excited by
the pressure pulse, the Rayleigh waves in the layer travel
with the velocity of Rayleigh waves in a homogeneous
half-space.

Fig. 8 shows that the peak value of the response varies
only slightly with distance from the center of explosion for
low and high velocity ratios ¢/v,. However, for ¢/v,=0.5,
the peak velocity increases with distance and then levels
off to a maximum value. This indicates that Rayleigh
waves are excited most effectively when the air pressure
wave sweeps across the ground with the Rayleigh wave
velocity. The maximum response is limited by the internal
damping of the soil.

Within the layer the amplitudes of the soil motion are
smaller than at the surface, Fig. 7c.

The response spectrum method is often used to analyse
structures subjected to ground motions. Therefore,
acceleration response spectra are computed. They are
presented in Fig. 9 for two distances from the centre of
explosion and for three wave velocity ratios. The
horizontal and vertical responmse accelerations are
normalized with respect to equation (9), and are plotted
versus the dimensionless frequency f*h/v,. Pronounced
peaks occur at the layer natural frequencies of the soil
layer especially near the first frequency for vertically
propagating P-waves. For ¢/v,=0.5 the effect of the
Rayleigh waves shows up in the change of the frequency
content as well as in the magnification of the response,
especially in the horizontal direction. Response spectra at
different depths under the soil surface show that the
amplitudes decrease with depth. However, the shape of
the spectra changes only slightly, Fig. 10. The horizontal
component is larger at z/h=0.7 than at 2/k=0.3; this is
due to the mode shapes of the Rayleigh wave.

4 LAYERED SOIL

An actual soil profile, typical for sediments in a river
valley, consisting of sand and gravel is considered next.
The shear wave velocity increases from 300 m/s at the
surface to 590 m/s at a depth of 80 m (Table 2). The total

height of the soil profile of 160m is discretized in 24
layers, along the soil surface the discretization interval is
x=2m. For the discrete Fourier transform a period of 3 s
and 256 time steps are used. The explosion is of
deflagration-type; the air pressure wave propagates in the
positive and negative x-direction with a constant velocity
of 340 m/s. This velocity is near the shear wave velocity in
the upper layers.

The time-histories of the particle velocity on the soil
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Fig. 9. Acceleration response spectra at the soil surface
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Table 2. Dynamic soil properties for layered soil case

Mass Shear Poisson-  Hysteretic
Depth density modulus | ratio damping
[m] [KS-s*/m*] [MN/m?] v B
0-5 160 150 030 0.05
512 1.90 165 0.438 0.05
12-30 195 220 0.48 0.03
30-60 2.00 330 047 0.03
60-88 2.05 530 0.46 0.02
88-148 2.10 700 0.45 0.02

surface at the distances of 30 m and 100 m away from the
centre of explosion are shown in Fig. 11. They are similar
to those in a homogeneous layer at air pressure velocities
near the Rayleigh wave velocity in the soil. The vertical
and horizontal acceleration response spectra for 5%
damping at different distances from the centre of
explosion are given in Fig. 12. The motion increases with
the distance from the centre of explosion due to surface
waves in the layered soil. The peak values in the response
spectra are at high frequencies. It should be noted that for
large stiff structures these frequencies may be filtered out
by kinematic and inertial soil structure interaction.

S. CONCLUSIONS

Propagating air pressure waves caused by gas cloud
explosions of deflagration type produce ground
accelerations with a high frequency content and only a
few significant cycles. The response depends on the ratio
of the air pressure wave velocity ¢ and Rayleigh wave
velocity vy in soil. Maximum response is obtained for
c¢=vg. In this case two-dimensional wave propagation
effects and material damping of the soil are very

Analysis of ground motion: H. Werkle and G. Waas

important. For c¢>uv,; simplified one-dimensional
methods which consider only vertically propagating P-
waves in soil may be used. The acceleration response
spectra of ground motions caused by gas cloud explosions
may be of similar magnitude as those of earthquakes, but
their dominant frequencies are much higher.
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APPENDIX: ANALYSIS METHOD FOR GREEN’S
FUNCTION

The equations of motion in a viscoelastic medium under
plane strain conditions in frequency domain can be
written:

e e &
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x{"}=g (A1)
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with G being the complex shear modulus, 4 the complex
Lame constant, p the mass density and  the circular
frequency of vibration. For a viscoelastic medium over a
fixed base the boundary conditions are zero stress at the
surface and zero displacements at the base.

A solution for the homogeneous equations (A1) is given
by equation (2):

u(x,z2) L QXA “pkx

{w(x, z)} 2% {z,tz)} :
However the analytical solution for the functions X (z)
and Z(z) leads to a nonalgebraic eigenvalues probiem
with complex eigenvalues k; which is difficult to solve.
Therefore the functions X (z) and Z (z) are approximated
by shape functions with a linear variation in each layer,
Fig. 1. The layer thickness must be chosen relatively thin
in order that elastic waves are adequately represented by
the assumed displacement functions (i.e., approximately
1/6 the length of a shear wave). Using a {inite element
approach, e.g., applying the principle of virtual
displacements with the same shape functions for the
virtual displacements X (z), Z,(z) as for the actual
displacement X(z), Z,(z), an cigenvalue problem is
obtained as:

@x"‘f"‘éx"‘r‘fx)'{g}'g (A2)

The vector {X; Z,}" contains the values of the function
X (). Z(z) at the layer interfaces. The matrices 4z, Bz, Cx
depend on the stiffness, damping and mass properties of
the layers and are given in Ref. 13. The eigenvalues
problem is algebraic and can be solved easily. It has 2-n,
generally complex wave numbers k; and eigenvectors X
and Z, containing the horizontal and vcrtica{
displacement components, respectively. Only those
eigenvalues, which correspond to waves, propagating
away from the origin are selected. This leads to different
solutions for x>0 and x<0.

The displacements, strains and stresses can now be
expanded in terms of the eigensolutions. In order to
compute the displacements caused by a line load at x=90,
the domains x>0 and x<0 are considered. For both
domains at x=0 the internal stresses and the external
stresses (represented by the line loads) must be in
equilibrium and displacements must be compatible. The
fullfillment of these conditions leads to a solution for the
Green’s function. The displacements at a distance x>0
away from the line loads are

u) = {X j(z)} ~
R TR - A3
{!} ng T lizy2) e

where u, w are the horizontal and vertical displacements
at the layer interfaces, respectively. The summation is
performed over 2*°n, modes, where n, is the number of
layers. The participation factors for a horizontal and a
vertical line load acting at layer interface { are:
Vertical line load p,:
Horizontal line load p,:

i
ay=—5k; Xos P (AS)

X;; and Z;; are the elements of the vectors X; and Z; at
the layer interface {, respectively. The normalization of
the eigenvectors is understood as in Refs I3 and
14. Details of the method are presented in Refs 12 to 15.
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