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Abstract 
The dynamic properties of Tuned Mass Dampers (TMD’s) used to reduce the 
vibrations of footbridges are generally based on the optimization criterion of Den 
Hartog. However the spring, mass and damper of a TMD may possess slight 
fabrication tolerances or change its damping element properties due to temperature, 
which can result in a detuning of a TMD. The study presented deals with the 
influence of a detuning on the performance of a TMD. A simplified model for 
beam-like footbridges under pedestrian loading is proposed. It is shown that a 
2-DOF-system in harmonic stationary motion represents a good approximation of 
the beam structure under transient time-dependent load. Graphs are given to assess 
the increase of acceleration and the decrease of effectiveness due to detuning. A 
case study on a footbridge with a span of 45 m demonstrates its accuracy.  

Key words: Tuned Mass Damper, TMD, footbridges, pedestrian bridges, 
human-induces vibrations 
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1. Introduction 

The mitigation of human-induced vibrations has become an important issue in the 
design of modern lightweight footbridges. The fundamentals of the excitation and the 
analytical methods for computation have been known since the 1980’s. In the last decade 
many countries introduced serviceability requirements for human induced vibrations in their 
building codes. These define limit values for the admissible maximum accelerations. In 
cases where these limits cannot be kept for the bridge in design, Tuned Mass Dampers 
(TMD’s) are appropriate means to reduce the vibrations considerably.  

The dynamic properties of a TMD i.e. its mass, spring constant and damping are 
determined considering the modal mass and the eigenfrequencies of the bridge. They are 
generally based on an optimization criterion for harmonic stationary motion known as the 
Den Hartog criterion. However the parameters of the tuned mass damper may change 
during the lifetime of the structure which results in a detuning of the TMD. The paper deals 
with the influence of the detuning on the effectiveness of a TMD for beam-like bridges 
where the first eigenfrequency is excited by a pedestrian. First, harmonic stationary motions 
are investigated. The results are compared with a comprehensive analysis of a realistic 
footbridge in time domain, in particular taking the transient loading by pedestrians into 
account. 

It should also be noted that the structural design parameters, e.g. the modal mass and 
the natural frequencies might differ from the values used in calculation and might change 
during the lifetime of the structure. These effects may also be a possible source of detuning 
which is not investigated here.  
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2. Analysis of Human-induced Vibrations of Footbridges 

Humans may excite a bridge to vibrate by different actions, such as walking, running, 
jumping and vandalism. These actions are generally described by load models. Here it is 
presumed that there is no interaction between the action and the action effect, i.e. the 
movement of the bridge, also called “lock-in effect”. A review of different models is given 
by Zivanovic (1) and Butz et. al. (2).  

Walking of a single person excites forces on the ground in the vertical as well as in 
horizontal directions. In this paper only vertical excitations are considered. They may be 
modelled as a single load F(t) varying in time and propagating with the velocity c as 

S Sc = f l⋅  (1) 

where fs denotes the step frequency and lS the step length. The step length depends on the 
step frequency and can be assumed to be 0.75-0.80m in the frequency range of about 2.0 Hz 
considered here. The time duration of a single step equals 

S
S

1T =
f

 (2) 

The load time history is expressed by a Fourier series as 
4

j S j
j 1

F( t ) G ( 1 sin( 2 j f t ))α π ϕ
=

= ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ −∑  (3) 

where G denotes the weight of the person (e.g. 0.7 kN) and fs the step frequency. The 

Fourier coefficients jα , jϕ  have been determined by different authors (see (1), (2)).  

Here the coefficients given by Bachmann (3) have been used; see Table 1. Typical step 
frequencies for walking are between 1.7 and 2.3 Hz. In a dynamic analysis the step 
frequency has to be assumed to cause the most severe action effect, i.e. to be in resonance 
with the structure, if the structure possesses an eigenfrequency in that range. 

Table 1. Fourier coefficients for walking 

 
 
 
 
 
 

The computational simulation of the vibrations of the bridge can be performed with the 
finite element method applying the described load model. For serviceability design the 
maximum acceleration computed for a single person pacing the bridge has to be augmented 
in order to consider a group of persons on the bridge, e.g. according to (4) for N persons 
walking on the bridge by the multiplication factor  

Groupm N=  (4) 

Simplified formulae have been derived in order to easily assess the maximum vertical 
acceleration of beam-like bridges. For a 1-DOF system with mass m , spring constant k and 
damping ratioξ  with a harmonic force 0F( t ) F sin( t )Ω= ⋅ ⋅  caused by a single person, 
the stationary response for the maximum acceleration at resonance is  

2 0 0
vert ,1 vert ,1

F Fk 1a u
2 km 2 m

ω
ξ ξ

= ⋅ = ⋅ ⋅ =
⋅ ⋅ ⋅

 (5) 

For a simply supported beam with the mass per length m and the span width L the 
modal mass is m m L / 2= ⋅ . In order to take into account that the load is transient and 
moving on the beam with a velocity c instead of being a stationary harmonic load on a 

i iα  iϕ
1 s s0.4 for f 2 Hz 0.5 for f 2.4 Hz≤ ≥  

HzfHzforf sS 4.20.24.0/)2(1.04.0 ≤≤−⋅+  
0 

2 0.1 π/2 
3 0.1 π/2 
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1-DOF system, a reduction factor redα  is introduced. Hamm (5) suggests a factor 

red 0.75α = . One obtains (6) 

vert ,1 red
Fa

M
= ⋅

⋅
α

ξ
 (6) 

with red 0.71α =  and 0F 0.4 700N 280N= ⋅ =  corresponding to the first Fourier term the 

formula of the maximum vertical acceleration for a single person given in Eurocode 5 (7) is 
obtained as 

vert ,1
200a
M ξ

=
⋅

 for vertf 2,5Hz≤  (7) 

where M denotes the total mass of the bridge in kg, ξ  the damping ratio and vertf  the first 
eigenfrequency of the (one-span) bridge in vertical direction. It should be noted that the 
formula gives the maximum acceleration in resonance of a 1-DOF system with the modal 
mass of the first mode, a harmonic load 0F  and a reduction factor r e dα  without any 
further assumptions.  

3. Tuned Mass Dampers 

To reduce the vibrations of footbridges, Tuned Mass Dampers (TMD’s) are generally 
used. They consist of a mass, a spring and a damper attached at the main system e.g. the 
footbridge. The main system with a TMD can be simplified as a 2-DOF system in which the 
bridge (or its modal mass) is represented as a 1-DOF system with the parameters Hk , Hc  
and Hm , as in Fig. 1. 

 

Dm

Hm

Dc Dk

Hc
Hk Hu

Du

)(tF

 
Fig. 1 Simplified model for a main system with a TMD. 

The solution of its equation of motion for stationary harmonic motion is (2): 
H Hu ( t ) u sin( t )Ω ϕ= ⋅ ⋅ +  (8) 

and 
2 2

H HHu ( t ) u sin( t ) u ( t )= − ⋅ ⋅ ⋅ + = − ⋅Ω Ω ϕ Ω&&  (9) 

with the dynamic amplification ratio 
2 2

H
H 2 2

H ,stat

u A BV ( )
u C D

η +
= =

+
 (10) 

and 
2 2A( )η η κ= − + ,  DB( ) 2η κ ζ η= ⋅ ⋅ ⋅  (11a) 

4 2 2 2
H DC( ) [ 1 ( 1 ) 4 ]η η μ κ κ ζ ζ η κ= − + + ⋅ + ⋅ ⋅ ⋅ ⋅ +  (11b) 

3
H D H DD( ) [ 2 [ ( 1 ) ] ] 2 ( )η ζ μ κ ζ η κ κ ζ ζ η= − ⋅ + + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅  (11c) 

H

Ωη
ω

= , D

H

m
m

μ = ,  D H

H D

k m
k m

⋅
=

⋅
κ , H

H H
H

k2 f
m

ω π= ⋅ ⋅ =  

HH

H
H km

c
⋅⋅

=
2

ξ , 
DD

D
D km

c
⋅⋅

=
2

ξ ,
H

stat k
Fu 0= . (11d) 

The properties of the TMD are generally based on an optimization criterion for steady state 
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motion as the Den Hartog criterion (8). The target of this optimization is the minimization 
of the displacements of the system with H 0ξ = . According to Den Hartog the frequency 
ratio should be chosen to be 

μ
κ

+
=

1
1

opt
 (12) 

and the damping ratio as 

3, )1(8
3

μ
μξ
+⋅
⋅

=optD
 (13) 

The corresponding parameters of the damper are 
D Hm mμ= ⋅  (14a) 

HoptD ff ⋅= κ,  (14b) 
2
,

2
, 4 optDDoptD fmk ⋅⋅⋅= π  (14c) 

   optDoptDDoptD fmc ,,, 4 ξπ ⋅⋅⋅⋅=  (14d) 

The main parameter for the design of the TMD is the mass ratio µ. In addition the mass 
and the eigenfrequency of the main structure have to be known. In practice, values of 
µ=0.02-0.08 are chosen. Fig. 2 shows the magnification function of the amplitudes of the 
main system for mass ratios µ=0.02, 0.05 and 0.08. 

 

 

 
Fig. 2  Amplitudes for a main system with a TMD, µ=0.02, 0.05, 0.08 and 0=Hξ . 

With these parameters of the TMD the maximum dynamic amplification ratio for 
H 0ξ =  is given by Den Hartog as 

μ
21max, +=HV  (15) 

Using the maximum dynamic amplification factor of a 1-DOF-system which is 
H ,maxV 1 /( 2 )ξ= ⋅  an equivalent damping of the TMD can be determined as 

μ

ξ
212

1
,

+⋅
=equivalH

 (16) 

As this equation has been derived for H 0ξ =  some portion of the damping of the main 
system e.g. H0.5 ξ⋅  may be added.  

The maximum acceleration of the main mass of the 2-DOF system acc. to eq. (9) is 

H
HHHHoptH k

FVtutua 0222
, )(max)(max)(max ⋅⋅⋅=⋅Ω== ηηω&&  (17) 

In the case of a beam-like bridge the equivalent damping may be used to determine the 
maximum acceleration system according to eq. (7). As comparative computations show due 
to the large damping of the system the reduction factor should be chosen to be red 1α = . 

µ=0.02 

µ=0.05

µ=0.08 
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With this assumption one obtains for a system with a TMD designed according the Den 
Hartog criteria 

vert ,1
H ,equival

280 560 2a 1
M Mξ μ

= = ⋅ +
⋅

  for vertf 2,5Hz≤  (18) 

 

4. Detuning of TMD’s 

In the production process springs, masses and dampers for the TMD are subjected to 
fabrication tolerances. In addition during lifetime there may be environmental influences. In 
particular, the outside temperature influences the damping constant of fluid dampers 
significantly, e.g. by a factor of 2 to 4, since the viscosity of the fluid is severely 
temperature dependent. Low temperatures (e.g. in winter) decrease the viscosity and 
increase the damping constant whereas high temperatures cause a loss of damping effect.  

In order to investigate the influence of these parameters on the effectiveness of TMD’s 
the mass, spring and damper are modified by the coefficients m k,α α  and cα : 

DmD mm ⋅=α~ , DkD kk ⋅= α~ , DcD cc ⋅= α~  (19) 
and for the frequency ratio 

κ
α
α

κ ⋅=
m

k~  (20) 

The dynamic amplification ratio HV ( )η%  of the detuned system can be determined with 
eq. (10) using the dimensionless parameters of the modified system 

μαμ ⋅= m
~ , κ

α
α

κ ⋅=
m

k~ , 
D

km

c
D ξ

αα
αξ ⋅
⋅

=
~  (21) 

This gives the maximum acceleration of the detuned system 

H
HHH k

FVa 022 )(~max~ ⋅⋅⋅= ηηω  (22) 

and the ratio of the accelerations of the detuned and the optimally tuned (according to Den 
Hartog) system 

)(max

)(~max
2

2

ηη

ηη
β

H

H
a V

V

⋅

⋅
= . (23) 

The acceleration ratios for µ=0.02, 0.05, 0.08, m0.8 1.2α≤ ≤  , k0.8 1.2α≤ ≤  and 

H 1%ξ =  are shown in Fig. 3. 
For 1/ ≈mk αα  the frequency ratio with κκ ≈~  is approximately unchanged and the 

maximum accelerations are near the accelerations for the tuning optimum or increase only 
slightly. There is even a small region where the accelerations slightly decrease compared to 
the “optimally” tuned TMD, e.g. at m k 1,10α α= = . This indicates that the Den Hartog 

optimization criteria which refers to the minimization of the displacements and not of the 
accelerations do not give the true minimum of the accelerations. For detuned systems with 

k m/ 1α α <<  or k m/ 1α α >>  the accelerations increase significantly, especially for low 

mass ratios µ. 
In order to assess the efficiency of the detuned damper the ratio  

optH

H

aa
aa

,0

0
~

−
−

=ν  (24) 

is introduced, where 0a  is the maximum acceleration of the system without TMD. If the 
detuned system has the same maximum acceleration as the optimally tuned system, i.e. if 

optHH aa ,
~ =  the effectiveness ratio is 1. If the maximum acceleration of the detuned system 
is the same as for the system without TMD, i.e. H 0a a=% , the efficiency is 0.  
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             0.02μ =                              0.05μ =  

                 
        
            0.08μ =  

Fig. 3  Acceleration ratios aβ  of detuned TMD’s – detuning of the spring and the mass. 

First the case of the 2-DOF-system is investigated. For the maximum acceleration of 
the system without TMD we obtain according to eq. (5) and the reduction factor 

red 0.75α = : 

2 2 red 0
0 red H vert ,1 H

H H

Fa u
2 k
αα ω ω
ξ

= ⋅ ⋅ = ⋅ ⋅
⋅

 (25) 

Introducing eq. (25) and eqn’s (17), (22) in (24) the effectiveness ratio of a detuned 
2-DOF-system for harmonic stationary motion is obtained as 

2red
H

H

2red
H ,opt

H

max V ( )
2

max V ( )
2

α η η
ξν α η η
ξ

− ⋅
⋅

=
− ⋅

⋅

%
 (26) 

Fig. 4 shows the effectiveness of detuned TMD’s for µ=0.02, 0.05, 0.08, variation of 
the mass and spring parameters of m0.8 1.2α≤ ≤  and k0.8 1.2α≤ ≤  and damping ratio of 
the main system H 1%ξ = . The figure shows that the effectiveness of the TMD is hardly 
influenced if k m/ 1κκ α α= ≈  but it is sensitive to ratios k m/ 1α α <<  or 1/ >>mk αα  

for low mass ratios µ. Again it can be noted that there is a small range where the Den 
Hartog criterion does not represent the real optimum solution for the accelerations, giving 
effectiveness ratios 1ν > . 

Figures 3 and 4 can be used to assess the influence of detuning of the spring and the 
mass of a TMD of a footbridge on the accelerations.  
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                0.02μ =                           0.05μ =  
 

                 
 
                0.08μ =  

Fig. 4  Effectiveness of detuned TMD’s – detuning of the spring and the mass. 

Damping coefficients possess a much larger range of variability than springs and 
masses. Fig. 5 shows the influence of the damper coefficient on the effectiveness of a TMD. 
Even for a large increase of the damping coefficient the effectiveness decreases only 
moderately whereas for a large decrease the effectiveness decreases fatally. This effect 
should be taken into account in a robust design of dampers for TMD’s. 

 

 
Fig. 5  Effectiveness of detuned TMD’s – detuning of the damper. 

 

5. Case Study 

The influence of a possible detuning is studied on a footbridge in Basel, Switzerland; 
see Fig. 6. It has a span width of 45 m, a total mass of 160 t and a first eigenfrequency of 
1.75 Hz. The damping of the steel bridge is 1%.  
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Fig. 6  Stückisteg footbridge, Basel, Switzerland. 

A finite element analysis has been performed on a simplified beam model with constant 
cross section having the same first eigenfrequency as the original bridge. The bridge is 
loaded by a time-dependent point load as given in eq. (2) propagating with the velocity c 
acc. to eq. (1) on the bridge (9). The weight of the person is assumed to be 0.7kN, the step 
length 0.80m and the step frequency equals the first eigenfrequency of 1.75Hz of the bridge. 
Fig. 7 shows the time history of the vertical accelerations in the middle of the bridge.    

 

         
Fig. 7 Acceleration time history at the middle of the bridge without TMD, a_max=0.14m/s². 

Now a TMD is added to the finite element model in the middle of the bridge. Its 
parameters are determined according to the Den Hartog optimization criteria. The lowest 
eigenfrequencies are now obtained as 1.61 Hz and 1.86 Hz. With a TMD with µ=0.02 
(referring to a modal mass of 80 t) and a step frequency of 1.86 Hz the vertical accelerations 
in Fig. 8 are obtained.  

 
Fig. 8 Acceleration time history at the middle of the bridge with TMD, µ=0.02, a_max=0.032m/s². 

The maximal vertical accelerations show a good agreement with the approximate 
relationships eq. (7) and eq (18), respectively; see Table 2. 

 
              Table 2. Maximum vertical acceleration in m/s² of the bridge 
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FEM 0.14   0.032 0.023 0.019 
Eq. (7) and (18) resp. 0.13  0.035 0.022 0.018 
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The influence of a possible detuning of the TMD is studied by varying the mass 
coefficient mα  and the spring coefficient kα  separately. The acceleration coefficients 

aβ  and effectiveness ratio ν , given in Fig. 9 for µ=0.02, show a good agreement between 
the 2-DOF system in harmonic stationary motion and the FEM model under transient 
loading. The analysis with the FEM model again demonstrates that the Den Hartog criterion 
does not give the minimum accelerations which can be achieved with a TMD. 

 

     
 
 

     
                                       
                                     
Fig. 9  Acceleration coefficient aβ  and effectiveness ratio ν  – detuning of the spring, µ=0.02. 

The detuning of the damper is studied at the FEM model by varying the damper 
coefficient cα  in the range of 0 to 4. Results are shown in Fig. 10. They agree well for 
both models in the range of c0.2 1.5α< < . However it is interesting to note that the results 
of the 2-DOF system for harmonic stationary motion underestimate the effectiveness for 
large coefficients cα . 

 
                                        µ=0.02. 

 
                               µ=0.08 

Fig. 10 Effectiveness ratio ν  for a detuning of the damper. 
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6. Conclusions 

The detuning of a TMD significantly influences its performance. However, even for 
considerably large deviations of the mass, stiffness and damper values an effectiveness of 
80% to 90% is obtained. To assess the effects due to detuning, a 2-DOF-system in harmonic 
stationary motion can be used as a close approximation for beam-like footbridges. From the 
graphs in Figs. 3, 4 and 5, the increase of the accelerations and the decrease of the 
effectiveness, respectively, can readily be observed. The study deals with beam-like 
footbridges. It should be extended to bridges with a more sophisticated geometry and to 
other optimization criteria.  
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