Finite Elements in Structural Analysis

Introduction

2 Truss and beam structures

Plate and shell structures Modeling

Methods of structural analysis

Classical methods of structural analysis

- Force method
- Displacement method

Finite Element Method (FEM)

- The Finite Element Method is a generalisation of the displacement method for structural analysis in matrix notation.
- For truss and beam structures it is also denoted as the Direct Stiffness Method (DSM).

Introductory example: Truss system

Nodal points

here: nodal points 1-4

Elements

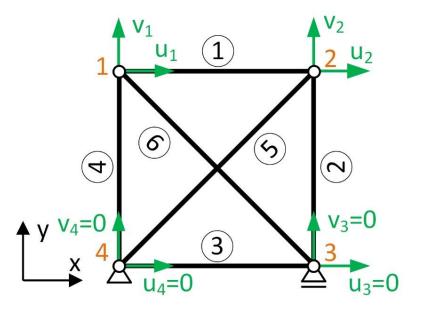
here: truss elements 1-6

Degrees of freedom

Degrees of freedom are independently movable displacements or rotations of nodal points. *here:* u₁, v₁, u₂, v₂, u₃, v₃, u₄, v₄

Support conditions

Restraints of individual degrees of freedom here: $v_3 = 0$, $u_4 = 0$, $v_4 = 0$



2 Truss and beam structures / 2.1 Introduction

Introductory example: Truss system

Nodal point forces

External forces here: F_{x1} , F_{y1} , F_{x2} , F_{y2} , F_{x3}

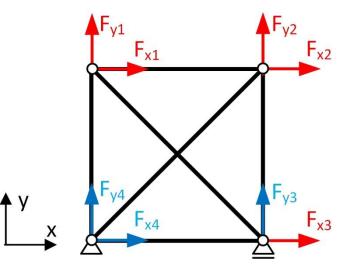
Support forces here: F_{y3},F_{x4},F_{y4}

Global coordinate system

Nodal point forces and nodal displacements are specifed in the global coordinate system. *here:* x, y

Sign rule

Nodal point forces and nodal displacements are positive in the direction of the positive coordinate axes of the global coordinate system.



2 Truss and beam structures / 2.1 Introduction

Introductory example: Truss system

F_{y1} F_{y2} System of equations F_{x1} F_{x2} The unknowns are displacements (displacements and rotations). The coefficient matrix is called the **global** stiffness matrix of the system. F_{y4} The right-hand side consists of the nodal point forces, i.e. the loads acting at the nodal points. F_{x3} X $\begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} & k_{15} \\ k_{21} & k_{22} & k_{23} & k_{24} & k_{25} \\ k_{31} & k_{32} & k_{33} & k_{34} & k_{35} \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{45} \\ k_{51} & k_{52} & k_{53} & k_{54} & k_{55} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \end{bmatrix} =$ F_{x1} F_{y1} (1) U_1 U2 6 5 N 4 F_{r3} v₄=0 $v_3=0$ *here:* $v_3=u_4=v_4=0$ They are omitted in the matrix due to 3 X

Prof. Dr.-Ing. Horst Werkle **Finite Elements in Structural Analysis**

the support conditions

01/23

 $u_{3}=0$

u₄=0

Characteristics of the system of equations

- 1. For stable i.e. not kinematic structural systems the system of equations has a unique solution. The global stiffness matrix is regular.
- 2. Diagonal terms are always positive (spring constants)
- 3. The stiffness matrix is symmetric
- 4. The global stiffness matrix is assembled from the stiffness matrices of the finite elements

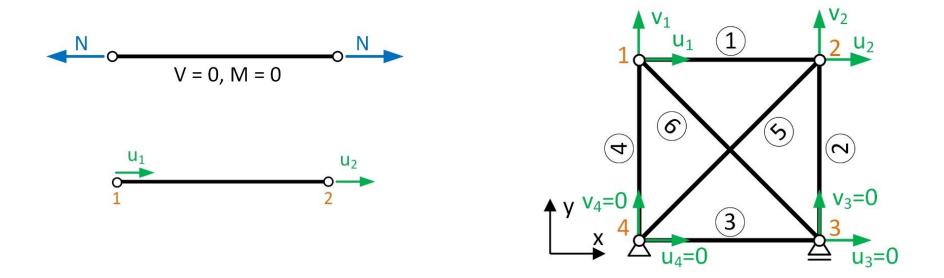
$$\begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} & k_{15} \\ k_{21} & k_{22} & k_{23} & k_{24} & k_{25} \\ k_{31} & k_{32} & k_{33} & k_{34} & k_{35} \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{45} \\ k_{51} & k_{52} & k_{53} & k_{54} & k_{55} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{x2} \\ F_{y2} \\ F_{x3} \end{bmatrix}$$

The solution of the system of equations gives the nodal point displacements.

Section forces and element stresses

The section forces and element stresses are determined *element by element* using the nodal point displacements.

here: Normal forces and normal stresses in the truss elements



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Computational steps of the Finite Element Method

- 1. Determination of the element stiffness matrices and the nodal point loads.
- 2. Assemblage of the global stiffness matrix with the element stiffness matrices and of the global load vector with the nodal loads.

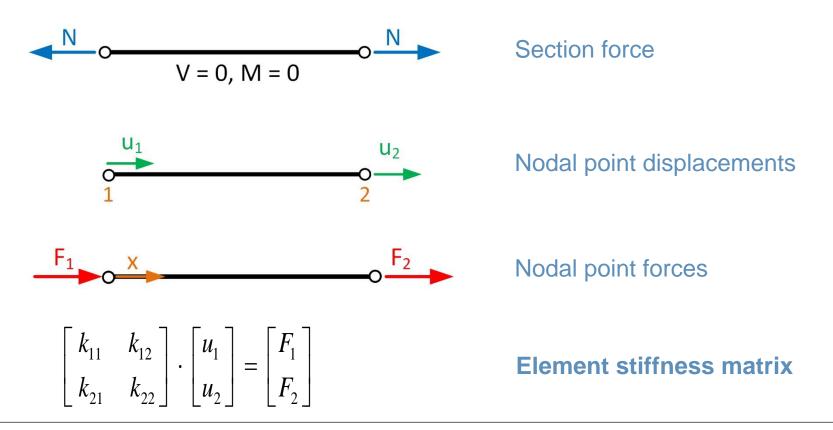
$$\begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} & k_{15} \\ k_{21} & k_{22} & k_{23} & k_{24} & k_{25} \\ k_{31} & k_{32} & k_{33} & k_{34} & k_{35} \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{45} \\ k_{51} & k_{52} & k_{53} & k_{54} & k_{55} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{x2} \\ v_2 \\ u_3 \end{bmatrix}$$

- 3. Solution of the system of equations with the global stiffness matrix gives the nodal point displacements.
- 4. Determination of the support reactions using the nodal point displacements.
- 5. Determination of the element stresses / section forces using the nodal point displacements.

Element stiffness matrix of a truss element

Stiffness matrix in local coordinates

Definition: A beam with normal forces only is called truss element

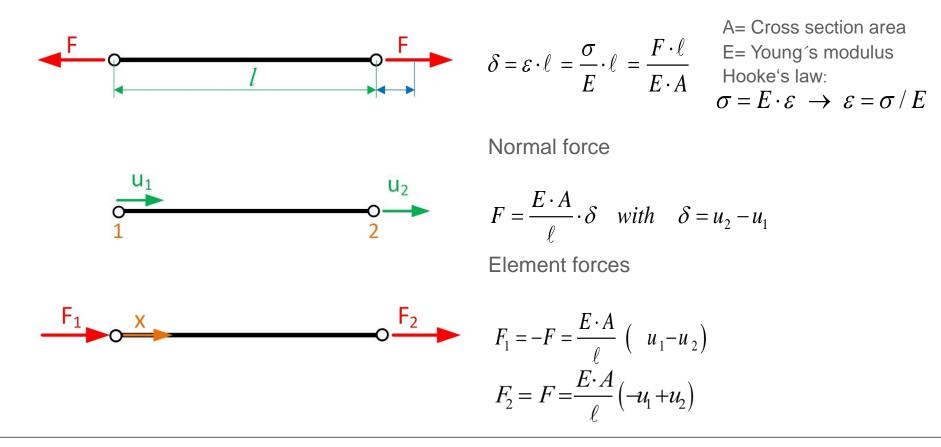


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Element stiffness matrix of a truss element

Derivation of the stiffness matrix

Elongation of a truss element



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

10

Element stiffness matrix of a truss element

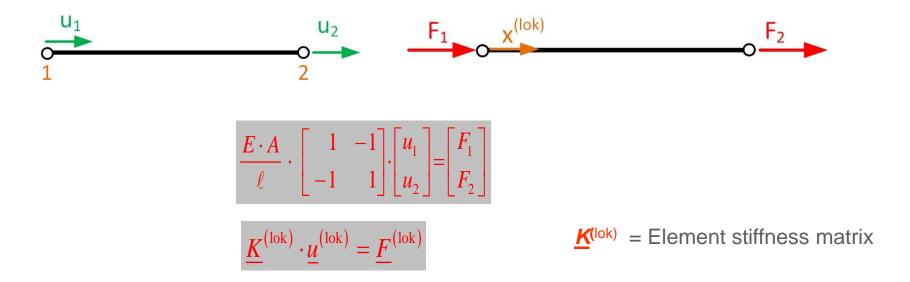
Derivation of the stiffness matrix Element forces $F_1 = \frac{E \cdot A}{\ell} (u_1 - u_2)$ $F_2 = \frac{E \cdot A}{\ell} (-u_1 + u_2)$

In matrix notation: Element stiffness matrix

$$\frac{E \cdot A}{\ell} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Element stiffness matrix of a truss element in local coordinates

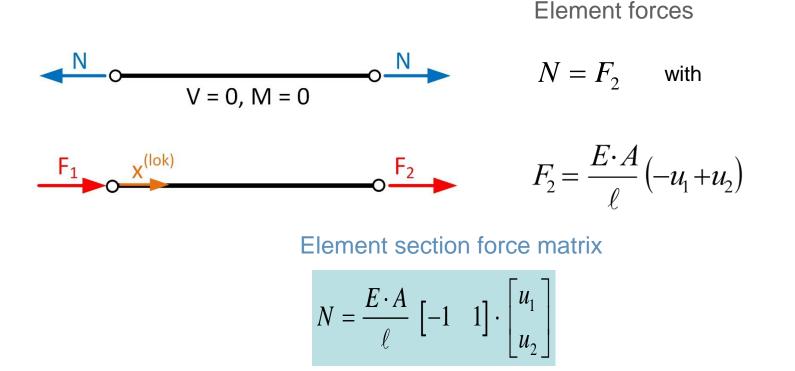


Properties of the element stiffness matrix:

- symmetric
- singular, i.e. the "structural system" is kinematic

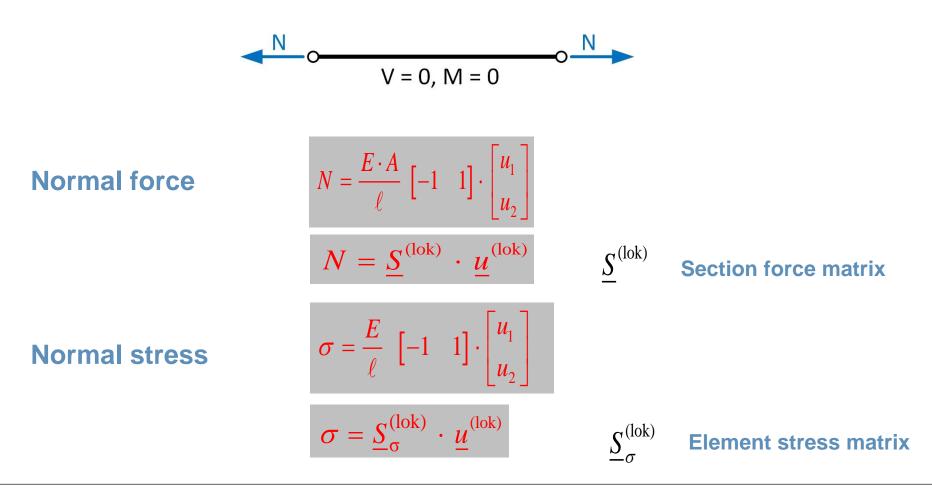
Element section force matrix of a truss element in local coordinates

The element section forces are computed with the element section force matrix (or the element stress matrix for the stresses) after the nodal displacements for the global system have been determined.



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Section forces matrix of a truss element in local coordinates



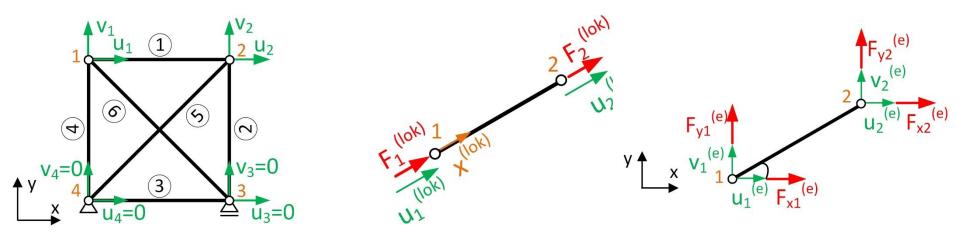
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

14

Element stiffness matrix of a truss element

Coordinate transformation

Element forces and displacements in global and local coordinates



Т	russ	system
	1000	0,000111

Element in local coodinates

Element in global coordinates

01/23

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Element stiffness matrix of a truss element

Coordinate transformation

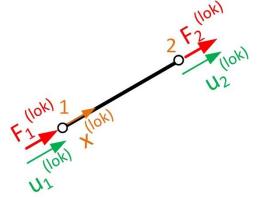
Element forces and displacements in local coordinates

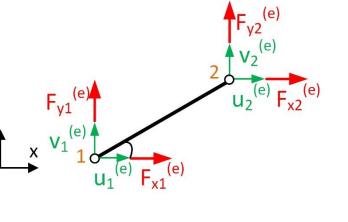
$$\underline{u}^{(lok)} = \begin{bmatrix} u_1^{(lok)} \\ u_2^{(lok)} \end{bmatrix} \qquad \underline{F}^{(lok)} = \begin{bmatrix} F_1^{(lok)} \\ F_2^{(lok)} \end{bmatrix}$$

Element forces and displacements in global coordir

$$\underline{u}^{(e)} = \begin{bmatrix} u_1^{(e)} \\ v_1^{(e)} \\ u_2^{(e)} \\ v_2^{(e)} \end{bmatrix} \qquad \underline{F}^{(e)} = \begin{bmatrix} F_{x1}^{(e)} \\ F_{y1}^{(e)} \\ F_{x2}^{(e)} \\ F_{y2}^{(e)} \end{bmatrix}$$

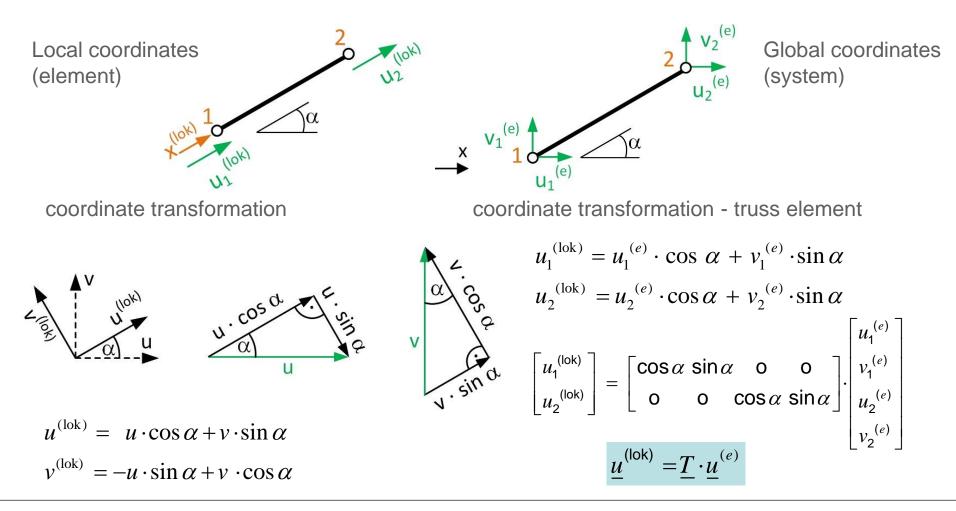
16





Element stiffness matrix of a truss element

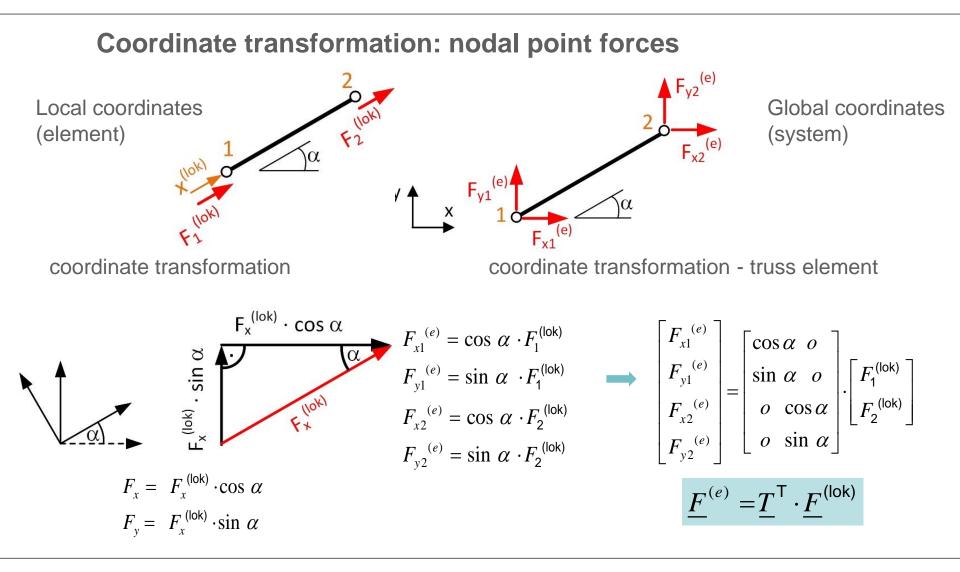
Coordinate transformation: nodal point displacements



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

17

Element stiffness matrix of a truss element

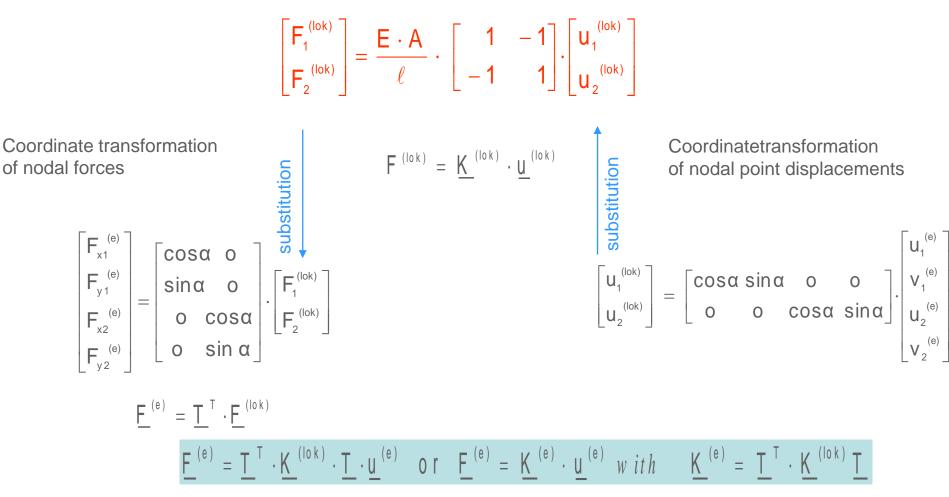


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

18

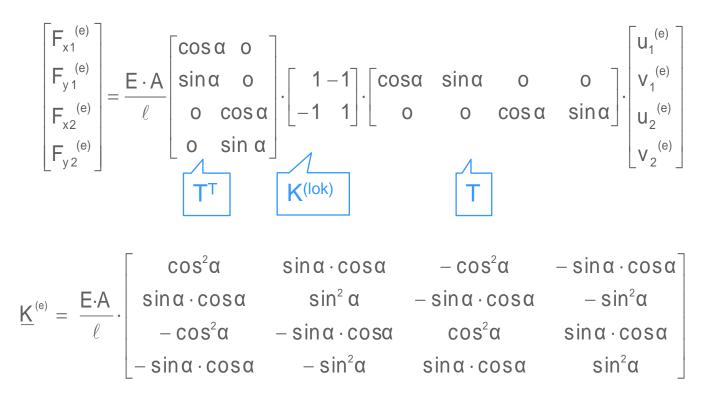
Element stiffness matrix of a truss element

Coordinate transformation: element stiffness matrix



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Coordinate transformation: element stiffness matrix



 $\underline{\mathbf{F}}^{(e)} = \underline{\mathbf{T}}^{\mathsf{T}} \cdot \underline{\mathbf{K}}^{(\mathsf{lok})} \cdot \underline{\mathbf{T}} \cdot \underline{\mathbf{u}}^{(e)} \quad \text{or} \quad \underline{\mathbf{F}}^{(e)} = \underline{\mathbf{K}}^{(e)} \cdot \underline{\mathbf{u}}^{(e)} \quad w \text{ it } h \qquad \underline{\mathbf{K}}^{(e)} = \underline{\mathbf{T}}^{\mathsf{T}} \cdot \underline{\mathbf{K}}^{(\mathsf{lok})} \underline{\mathbf{T}}$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Element stiffness matrix of a truss element

Coordinate transformation: element section force matrix Х Coordinate transformation of nodal displacements Section forces in local coordinates Section forces matrix in global coordinates $N = \frac{E \cdot A}{\ell} \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{vmatrix} u_1^{(\text{lok})} \\ u_2^{(\text{lok})} \end{vmatrix}$ $N = \frac{E \cdot A}{\ell} \cdot \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \alpha & \sin \alpha & o & o \\ o & o & \cos \alpha & \sin \alpha \end{bmatrix} \cdot \begin{bmatrix} u_1^e \\ v_1^e \\ u_2^e \\ \vdots \end{bmatrix}$ V=0,M=0 $N = S^{(e)} \cdot u^{(e)}$

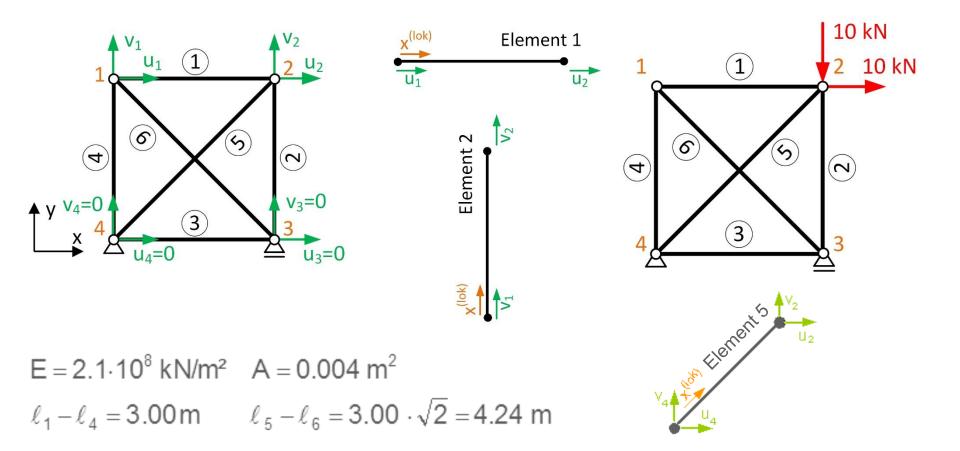
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

21

Element stiffness matrix of a truss element



Example: Element stiffness and section force matrices



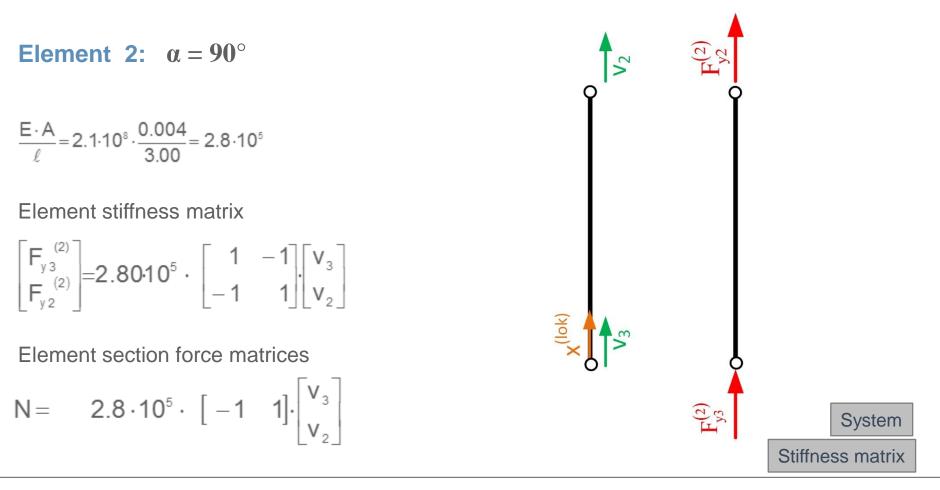
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

23

Example: Element stiffness and section force matrices

X^(IOK) Element 1: $\alpha = 0^{\circ}$ U2 $\frac{E \cdot A}{\ell} = 2.1 \cdot 10^{\circ} \cdot \frac{0.004}{3.00} = 2.8 \cdot 10^{\circ}$ Element stiffness matrix $\begin{vmatrix} F_{x1}^{(1)} \\ F^{(1)} \end{vmatrix} = 2.80.10^5 \cdot \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} \begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$ Element section force matrices $N = 2.8 \cdot 10^5 \cdot \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$ System Stiffness matrix

Example: Element stiffness and section force matrices



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

25

Example: Element stiffness and section force matrices

Element 3: $\alpha = 0^{\circ}$

$$\frac{\mathsf{E} \cdot \mathsf{A}}{\ell} = 2.1 \cdot 10^8 \cdot \frac{0.004}{3.00} = 2.8 \cdot 10^5$$

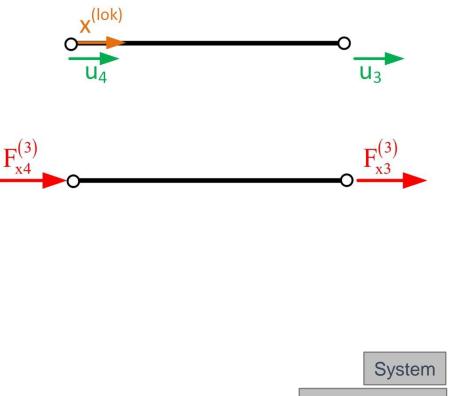
Element stiffness matrix

$$\begin{bmatrix} F_{x4}^{(3)} \\ F_{x3}^{(3)} \end{bmatrix} = 2.80 \cdot 10^5 \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_4 \\ u_3 \end{bmatrix}$$

Element section force matrices

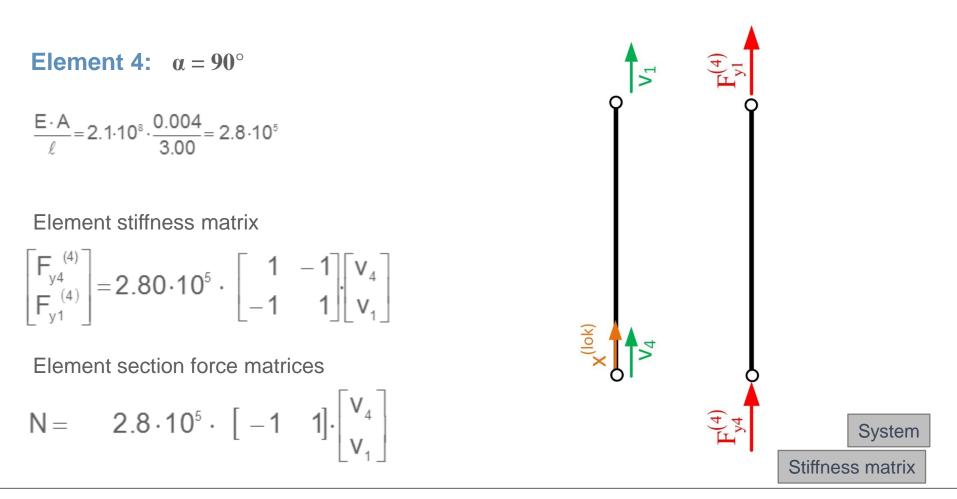
$$N = 2.8 \cdot 10^5 \cdot \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_4 \\ u_3 \end{bmatrix}$$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis



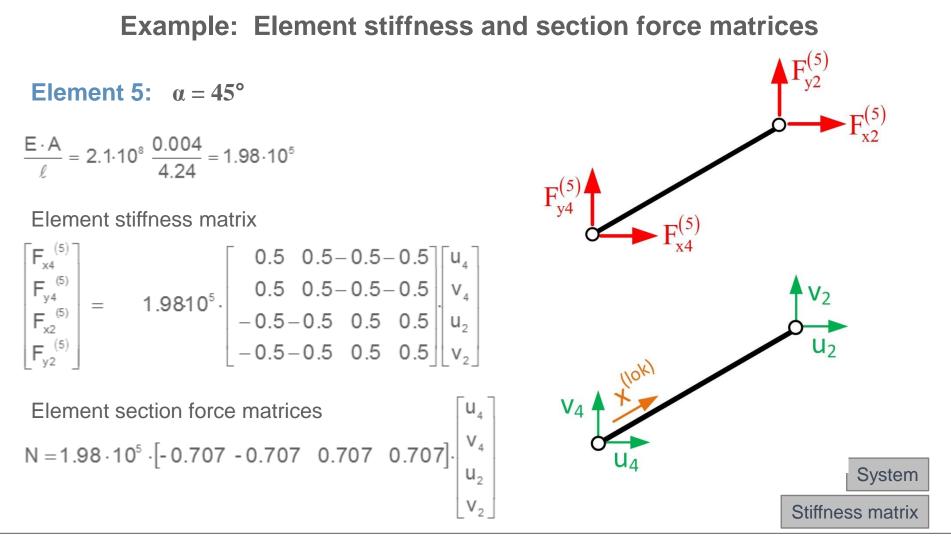
Stiffness matrix

Example: Element stiffness and section force matrices



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

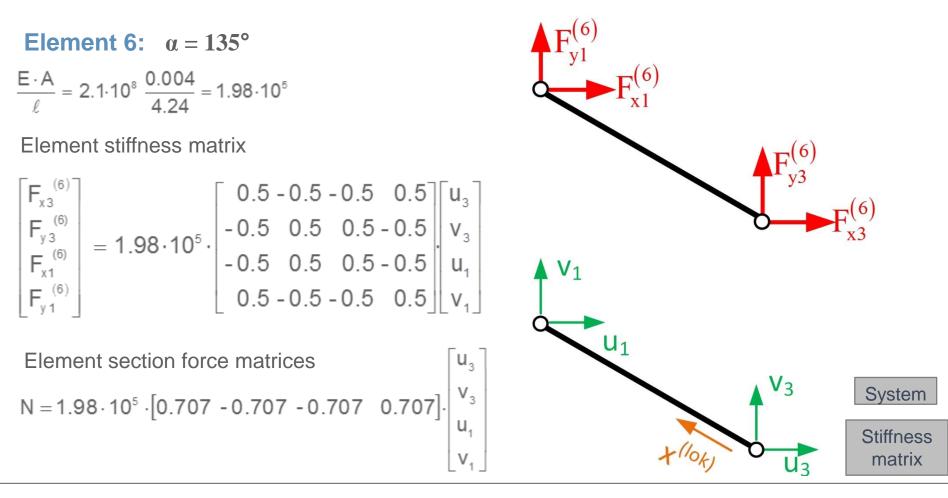
27



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

28

Example: Element stiffness and section force matrices



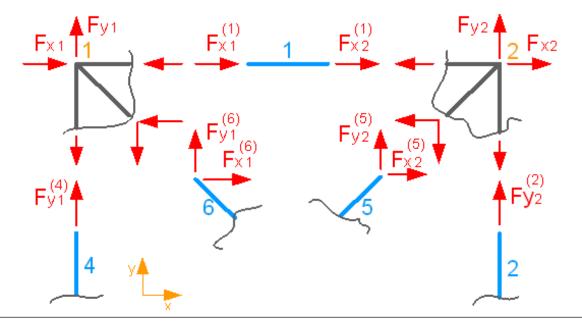
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis 29

Assembly of the global stiffness matrix

The global stiffness matrix is constructed by assembling the elements at the nodal points.

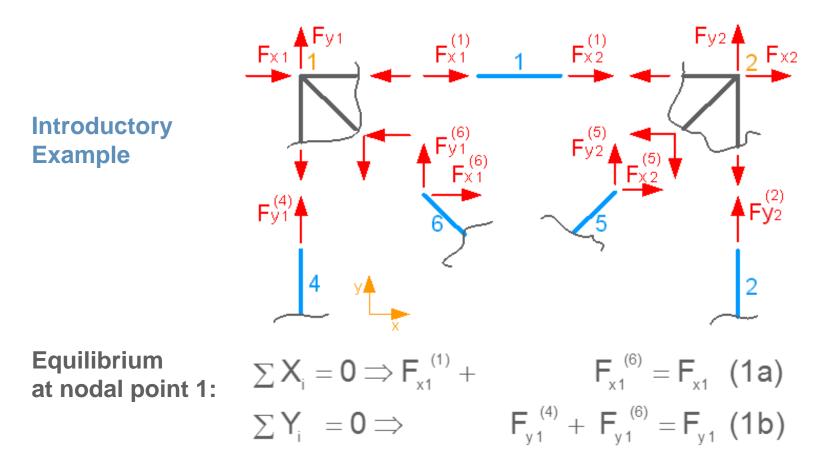
Compatibility conditions

- Equations of equilibrium at all nodal points
- Compatibility of the displacements at all nodal points



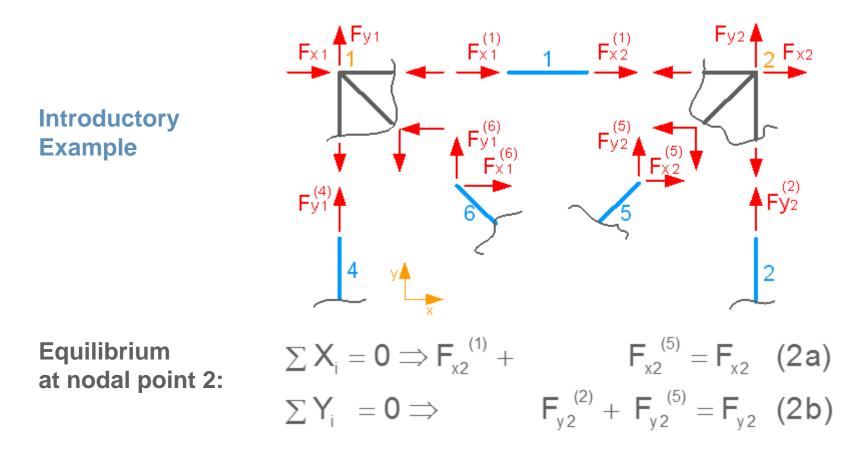
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Assembly of the global stiffness matrix



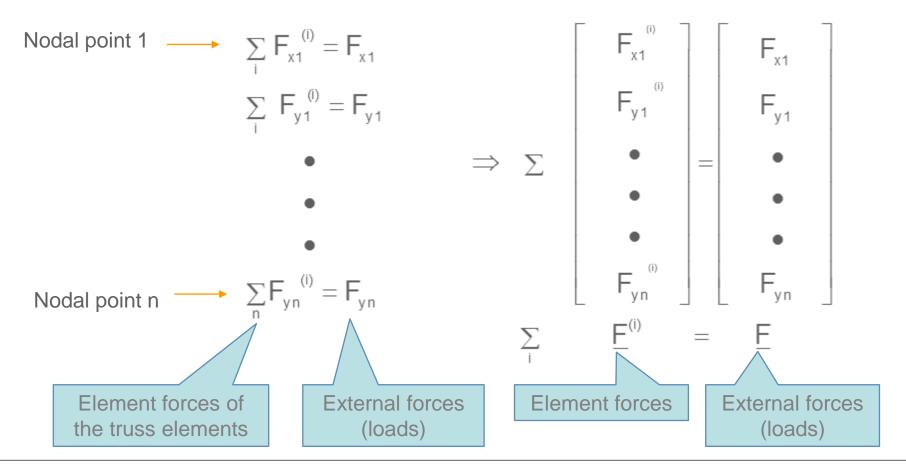
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Assembly of the global stiffness matrix



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Assembly of the global stiffness matrix

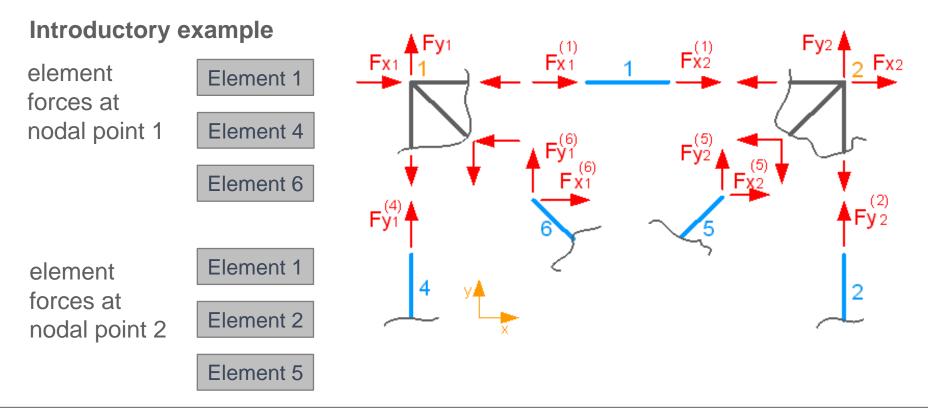


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

33

Assembly of the global stiffness matrix

The element forces are expressed by the element stiffness matrices.

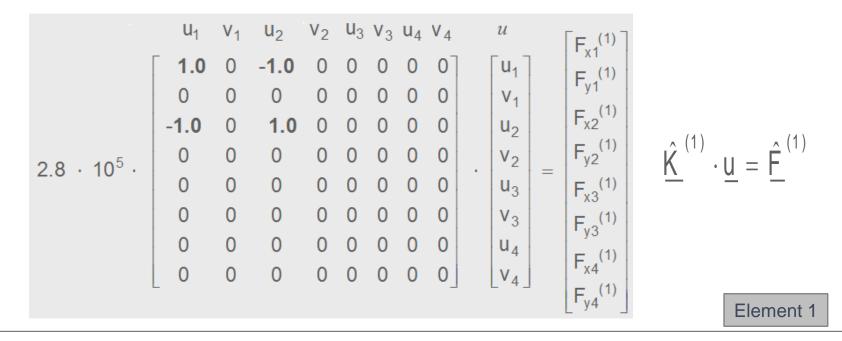


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Assembly of the global stiffness matrix

The element stiffness matrices are expanded with zeroes for all degrees of freedom of the system.

Introductory example, element 1:
$$2.80 \cdot 10^5 \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} F_{x1}^{(1)} \\ F_{x2}^{(1)} \end{bmatrix} \qquad \underline{K}^{(1)} \cdot \underline{U} = \underline{F}^{(1)}$$



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

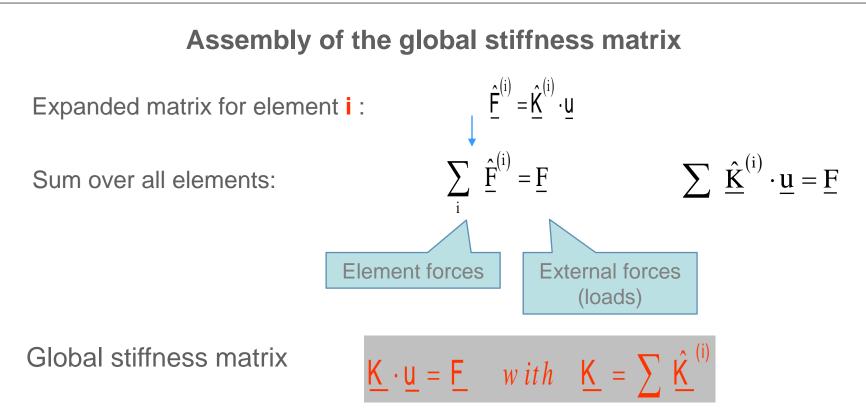
Assembly of the global stiffness matrix

The element stiffness matrices are expanded with zeroes for all degrees of freedom of the system.

Introductory example, element 2:

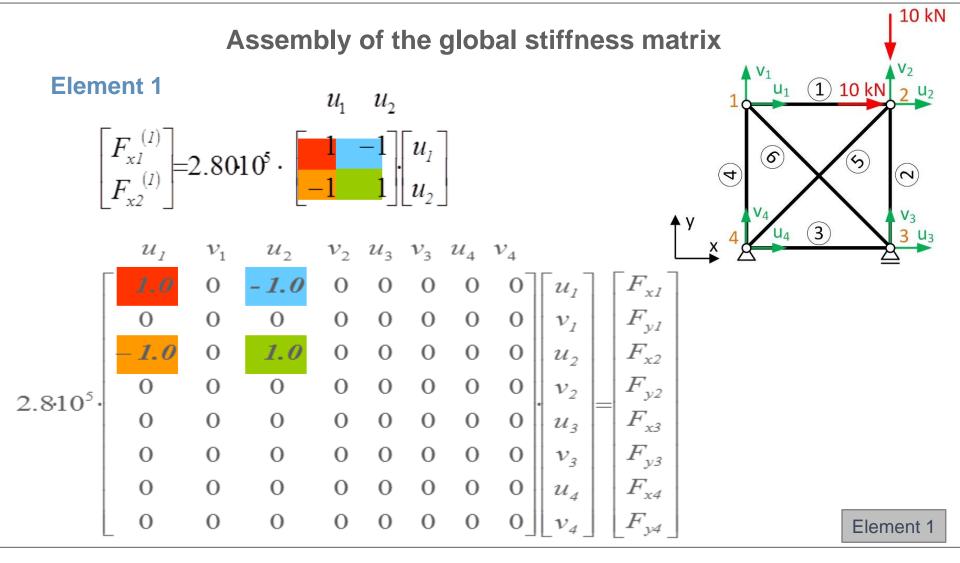
$$\begin{bmatrix} F_{y_3} \\ F_{y_2} \end{bmatrix} = 2.80 \cdot 10^5 \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} v_3 \\ v_2 \end{bmatrix} \quad \underline{K}^{(2)} \cdot \underline{U} = \underline{F}^{(2)}$$

Prof. Dr.-Ing. Horst Werkle **Finite Elements in Structural Analysis**



The global stiffness matrix is assembled from the element stiffness matrix.

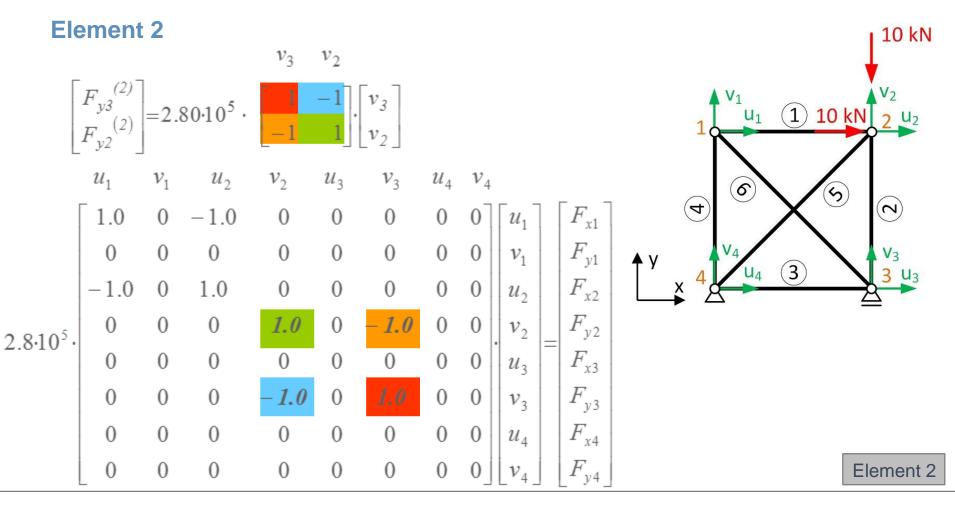
The coefficients of the element stiffness matrix are added to the global stiffness matrix at the rows and columns corresponding to their degress of freedom.



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

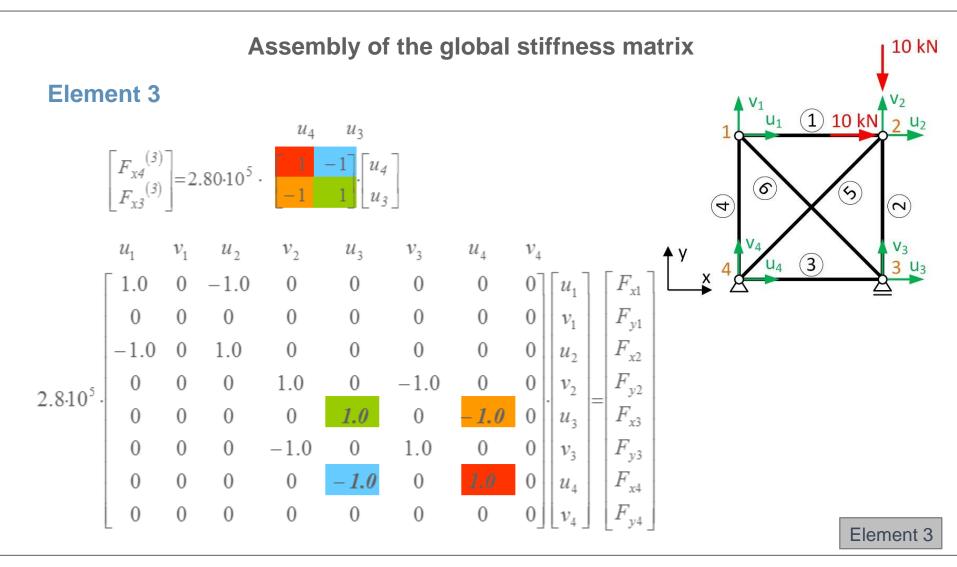
3

Assembly of the global stiffness matrix

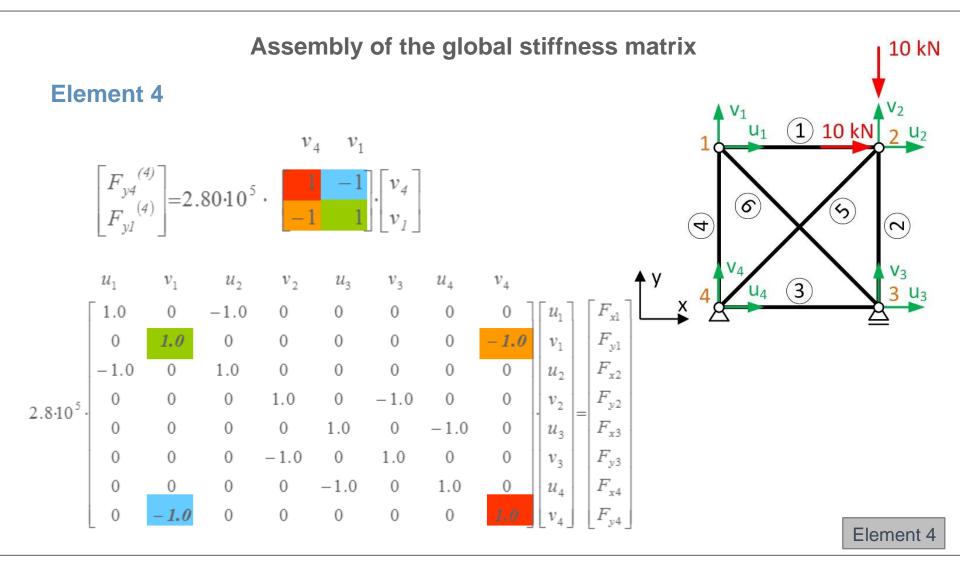


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

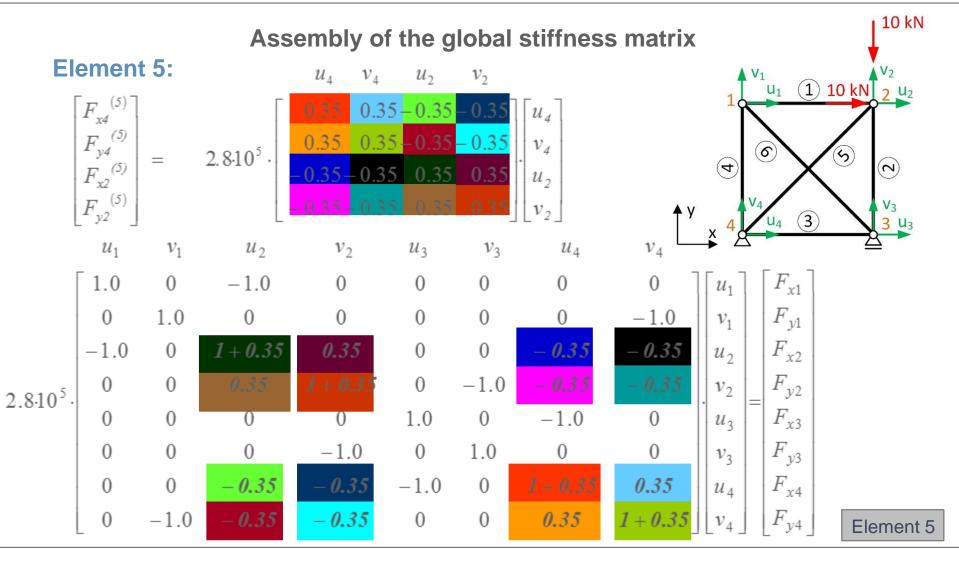
39



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis 40

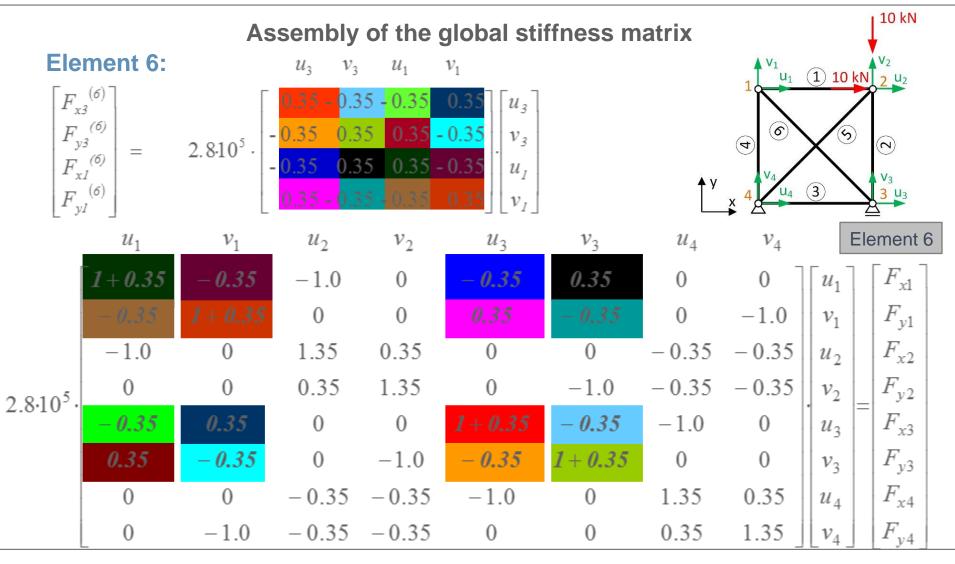


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

42

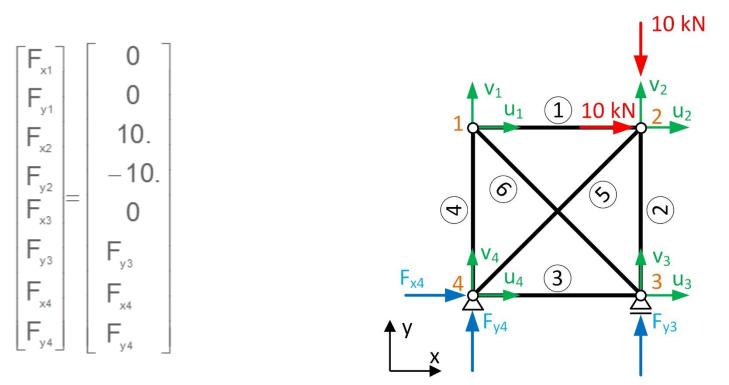


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

43

Assembly of the global stiffness matrix

Load vector



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

44

Global stiffness matrix without restraints – introductory example

$$u_{1} \quad v_{1} \quad u_{2} \quad v_{2} \quad u_{3} \quad v_{3} \quad u_{4} \quad v_{4}$$

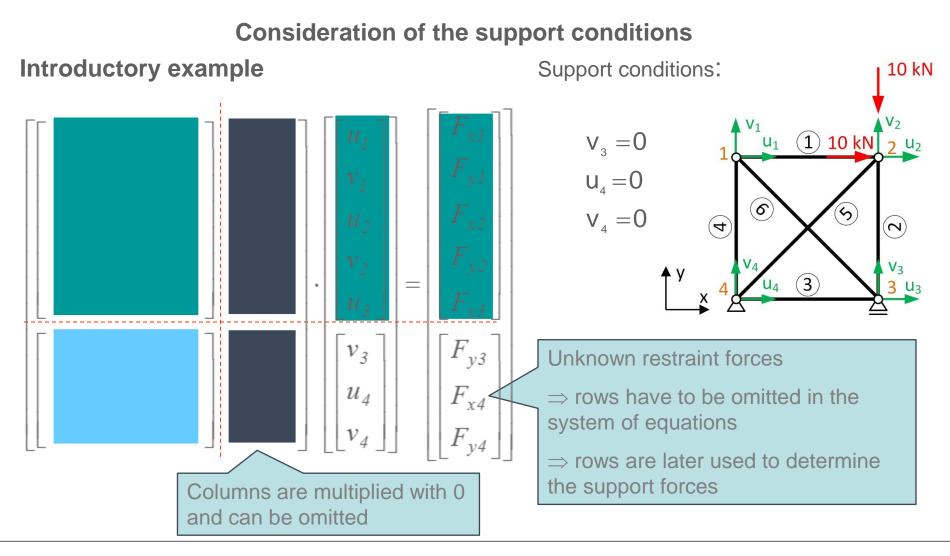
$$\begin{bmatrix} 1.35 & -0.35 & -1.0 & 0 & -0.35 & 0.35 & 0 & 0 \\ -0.35 & 1.35 & 0 & 0 & 0.35 & -0.35 & 0 & -1.0 \\ -1.0 & 0 & 1.35 & 0.35 & 0 & 0 & -0.35 & -0.35 \\ 0 & 0 & 0.35 & 1.35 & 0 & -1.0 & -0.35 & -0.35 \\ -0.35 & 0.35 & 0 & 0 & 1.35 & -0.35 & -1.0 & 0 \\ 0.35 & -0.35 & 0 & -1.0 & -0.35 & 1.35 & 0 & 0 \\ 0 & 0 & -0.35 & -0.35 & -1.0 & 0 & 1.35 & 0.35 \\ 0 & -1.0 & -0.35 & -0.35 & 0 & 0 & 0.35 & 1.35 \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3} \\ v_{3} \\ u_{4} \\ v_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 10 \\ -10 \\ 0 \\ F_{y3} \\ F_{x4} \\ F_{y4} \end{bmatrix}$$

Properties of the stiffness matrix

- symmetric (composed of symmetric element matrices)
- singular, because the structural system is (still) kinematic

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

45



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Stiffness matrix with consideration of the support conditions

System of equations for the displacements

$$2.8 \cdot 10^{5} \cdot \begin{bmatrix} 1.35 & -0.35 & -1.0 & 0 & -0.35 \\ -0.35 & 1.35 & 0 & 0 & 0.35 \\ -1.0 & 0 & 1.35 & 0.35 & 0 \\ 0 & 0 & 0.35 & 1.35 & 0 \\ -0.35 & 0.35 & 0 & 0 & 1.35 \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 10 \\ -10 \\ 0 \end{bmatrix}$$

Properties of the global stiffness matrix:

- regular
- symmetric

Equations for the support forces

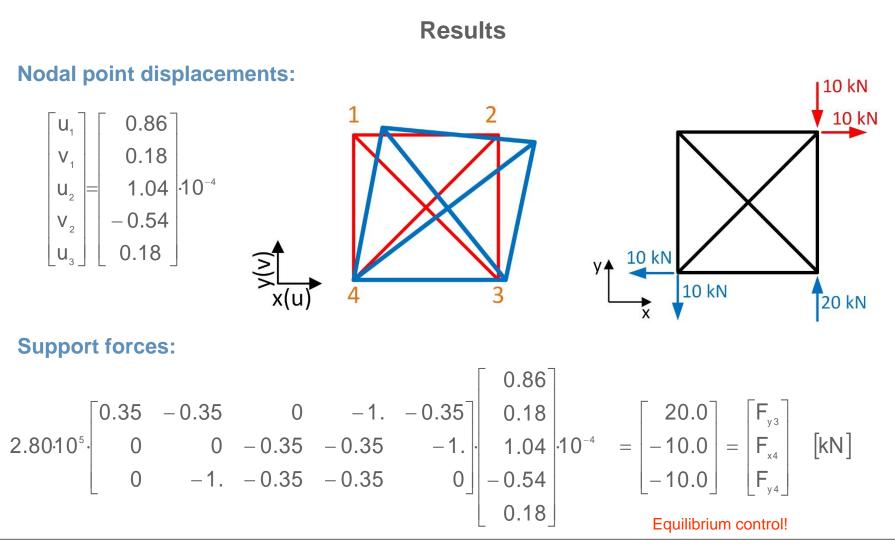
$$2.80 \cdot 10^{5} \cdot \begin{bmatrix} 0.35 & -0.35 & 0 & -1.0 & -0.35 \\ 0 & 0 & -0.35 & -0.35 & -1.0 \\ 0 & -1.0 & -0.35 & -0.35 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} F_{y3} \\ F_{x4} \\ F_{y4} \end{bmatrix}$$

The support forces always fulfill the equilibrium conditions with the nodal forces.

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

47

Introductory example



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Introductory example

Results

Section forces:

Element 1:
 Element 1
 Element 4:
 Element 4

$$N_1 = 2.80 \cdot 10^5 \cdot [-1. 1.] \cdot \left[\begin{array}{c} 0.86 \\ 1.04 \end{array} \right] \cdot 10^{-4} = 5.0$$
 $N_4 = 2.80 \cdot 10^5 \cdot [-1. 1.] \cdot \left[\begin{array}{c} 0.00 \\ 0.18 \end{array} \right] \cdot 10^{-4} = 5.0$

 Element 2:
 Element 2
 Element 5:
 Element 5

 $N_2 = 2.80 \cdot 10^5 \cdot [-1. 1.] \cdot \left[\begin{array}{c} 0.00 \\ -0.54 \end{array} \right] \cdot 10^{-4} = -15.0$
 $N_5 = 1.98 \cdot 10^5 \cdot [-0.71 - 0.71 - 0.71 - 0.71] \cdot 0.71 \right] \left[\begin{array}{c} 0.00 \\ 0.00 \\ 1.04 \\ -0.54 \end{array} \right] \cdot 10^{-4} = -7.0$

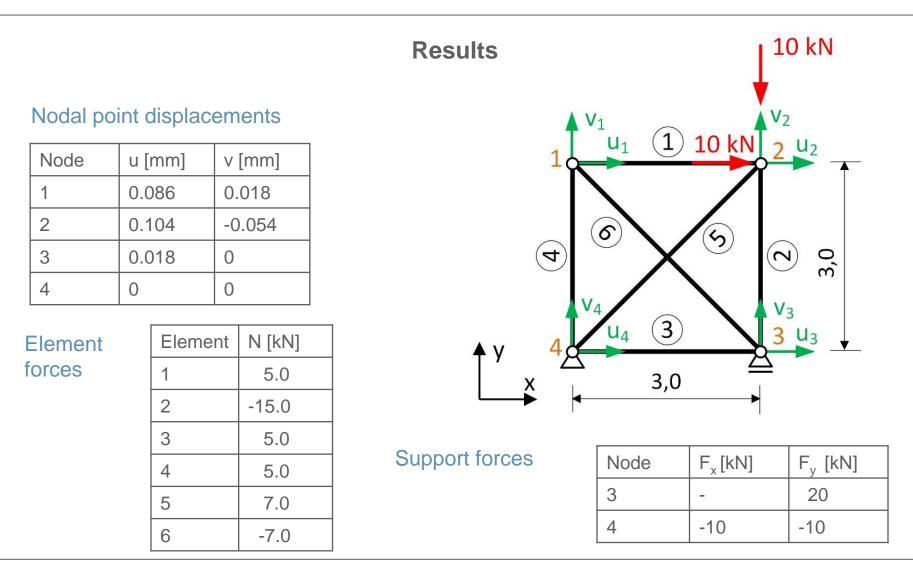
 Element 3:
 Element 3
 Element 6:
 Element 6

 $N_3 = 2.80 \cdot 10^5 \cdot [-1. 1.] \cdot \left[\begin{array}{c} 0.00 \\ 0.00 \\ 0.018 \end{array} \right] \cdot 10^{-4} = 5.0$
 $N_6 = 1.98 \cdot 10^5 \cdot [0.71 - 0.71 - 0.71 - 0.71] \cdot 0.71 \right] \left[\begin{array}{c} 0.18 \\ 0.00 \\ 0.86 \\ 0.18 \end{array} \right] \cdot 10^{-4} = -7.0$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

49

Introductory example



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

50

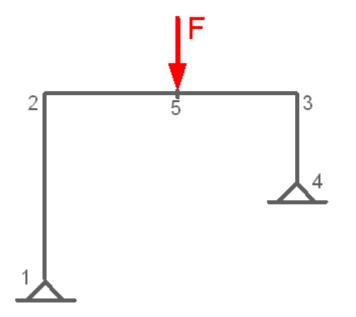
Conclusions

- Elements should be appropriately connected with nodes
- Kinematic structural systems lead to unsolvable systems of equations.
 Possible program responses could be: stiffness matrix is singular, determinant is zero, program abort)
- Stiffness parameters as cross section areas, moments of inertia (for beams in bending), etc. are always to be entered in the program in order to establish the stiffness matrices.
- Support forces always fulfill the equilibirium conditions with the external loads.

Example 1
Example 2
Example 3

Introduction 2 Truss and beam structures Plate and shell structures Modeling

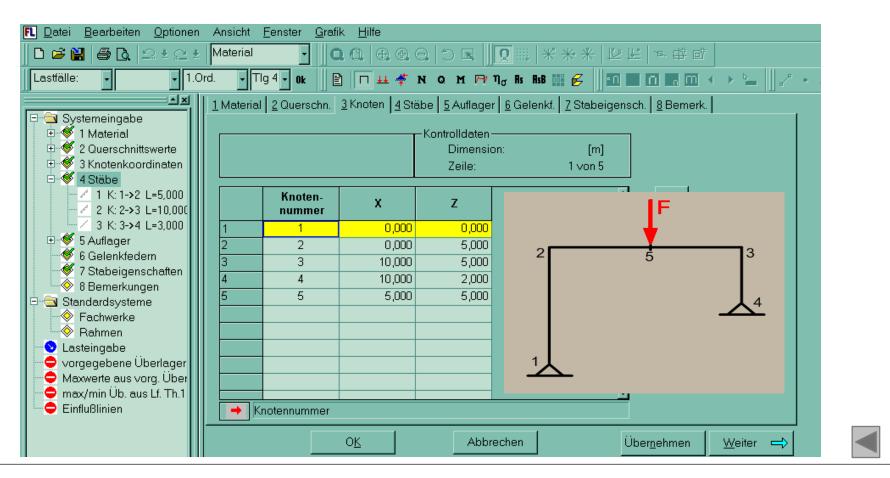
Examples for erroneous system parameters - Example 1



Problem: A FE program calculates all displacements and section forces as zero, although when the input of the load is F=10 kN

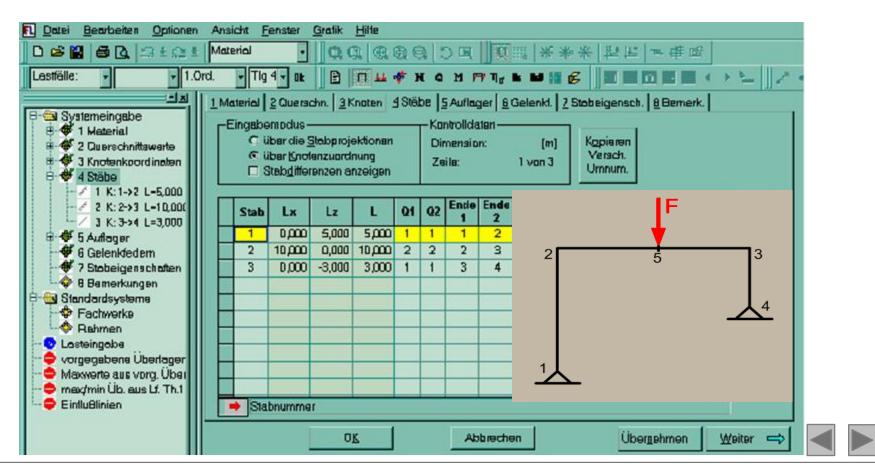
How is it possible?

Examples for erroneous system parameters - Example 1



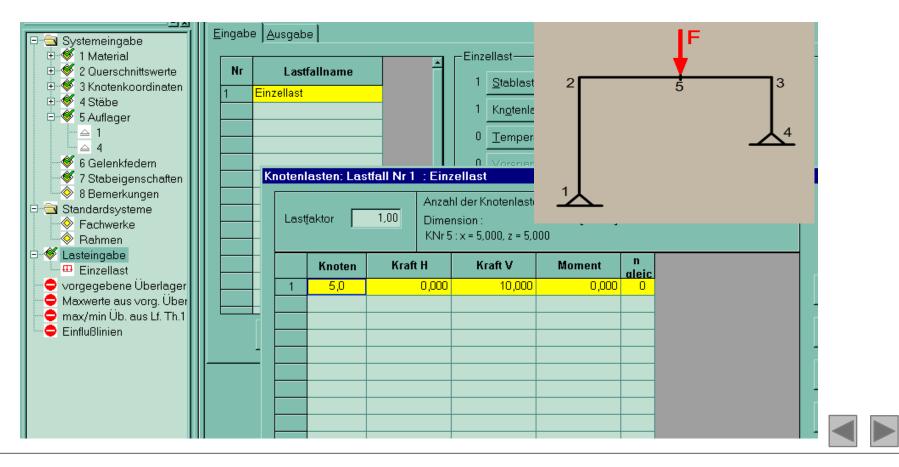
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Examples for erroneous system parameters - Example 1

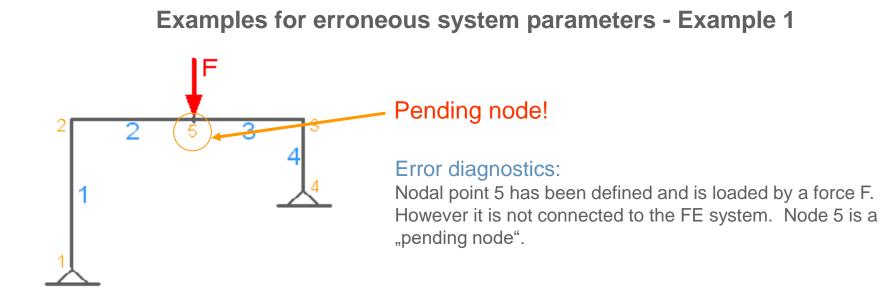


Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Examples for erroneous system parameters - Example 1



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis



Element definition (erroneous):

Element number	Node 1	Node 2
1	1	2
2	2	3
3	3	4

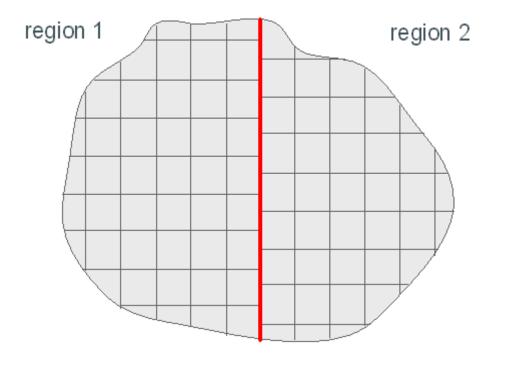
Element definition (correct):

Element number	Node 1	Node 2
1	1	2
2	2	5
3	5	3
4	3	4

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

57

Examples for erroneous system parameters - Example 2

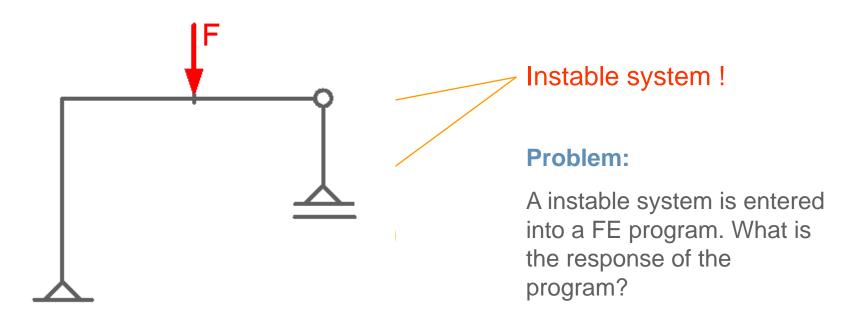


Problem

Rectangular finite elements in two adjoining regions of a plate have been generated by a FE Program.

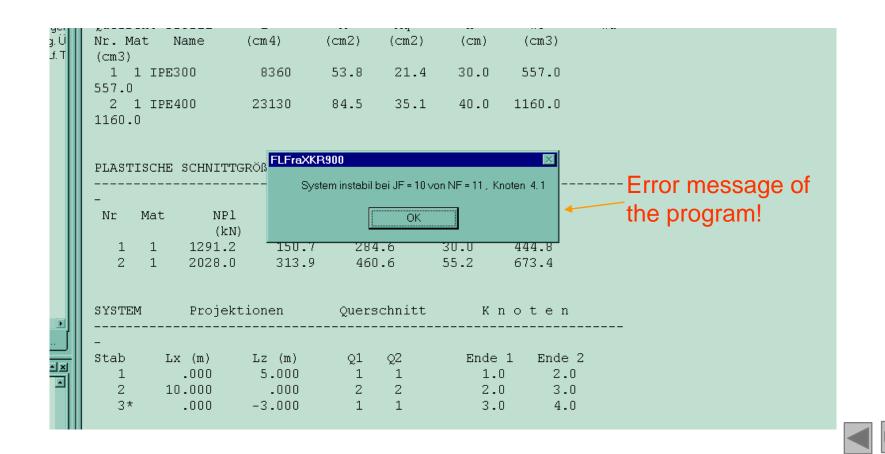
Attention! The elements at the common interface are NOT connected unless special elements for this purpose are used. FE nets have to be checked carefully!

Examples for erroneous system parameters - Example 3



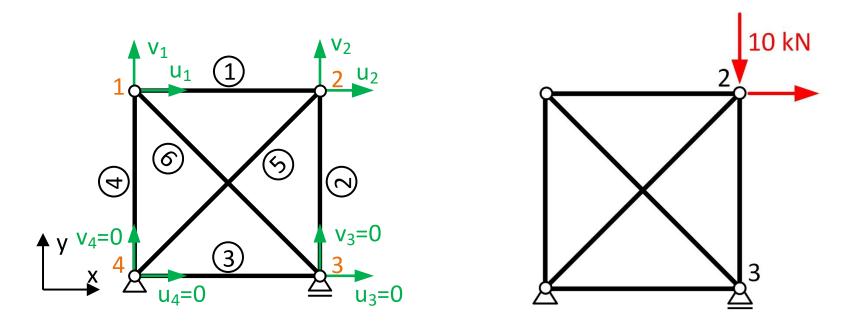
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Examples for erroneous system parameters - Example 3



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Example: Element stiffness and section force matrices



$$\begin{split} &\mathsf{E} = 2.1 \cdot 10^8 \; k \, \text{N/m}^2 \quad \mathsf{A} = 0.004 \; \text{m}^2 \\ &\ell_1 - \ell_4 = 3.00 \; \text{m} \qquad \ell_5 - \ell_6 = 3.00 \cdot \sqrt{2} = 4.24 \; \text{m} \end{split}$$

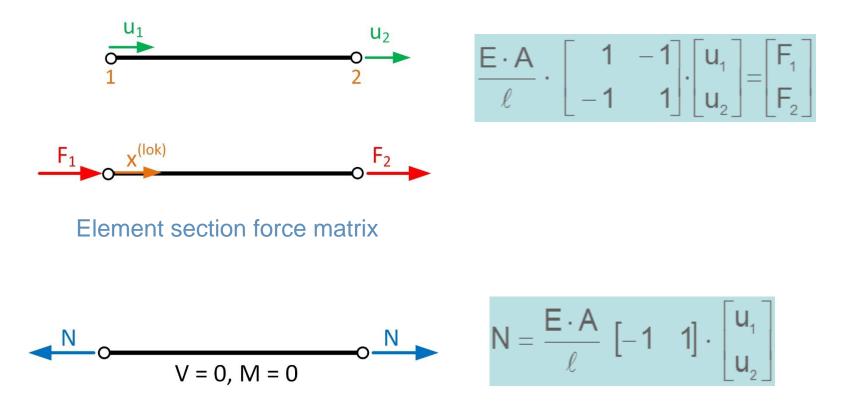
Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis U

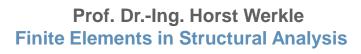
61

2 Truss and beam structures / 2.2 Truss element

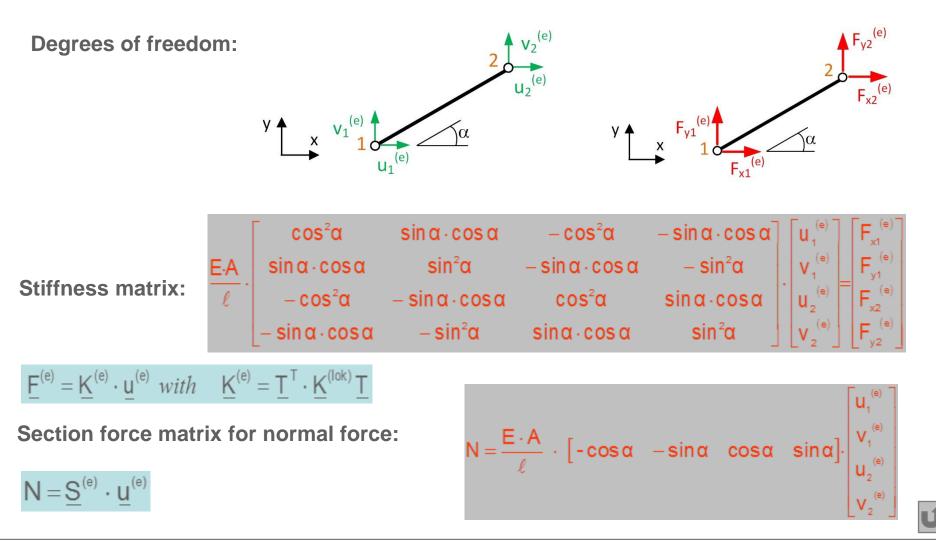
Element stiffness matrix of a truss element

Element stiffness matrix





62



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

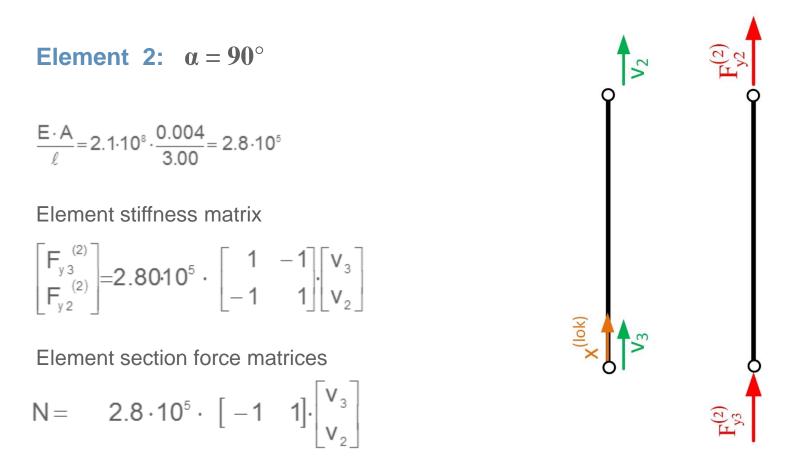
Example: Element stiffness and section force matrices

Element 1: $\alpha = 0^{\circ}$ $\frac{E \cdot A}{\ell} = 2.1 \cdot 10^{\circ} \cdot \frac{0.004}{.300} = 2.8 \cdot 10^{\circ}$ U2 Element stiffness matrix $\begin{vmatrix} F_{x1}^{(1)} \\ F^{(1)} \end{vmatrix} = 2.80 \cdot 10^5 \cdot \begin{vmatrix} 1 & -1 & u_1 \\ -1 & 1 & u_2 \end{vmatrix}$ Element section force matrices $N = 2.8 \cdot 10^5 \cdot \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

64

Example: Element stiffness and section force matrices



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

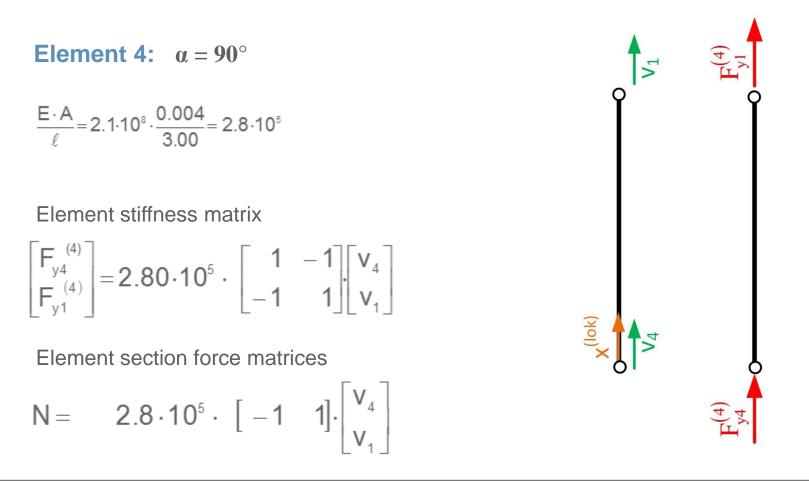
Example: Element stiffness and section force matrices

Element 3: $\alpha = 0^{\circ}$ $\frac{E \cdot A}{\ell} = 2.1 \cdot 10^{\circ} \cdot \frac{0.004}{3.00} = 2.8 \cdot 10^{\circ}$ Element stiffness matrix $\begin{bmatrix} F_{x4}^{(3)} \\ F_{x3}^{(3)} \end{bmatrix} = 2.8010^{\circ} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_{4} \\ u_{3} \end{bmatrix}$ Element section force matrices

$$N = 2.8 \cdot 10^5 \cdot \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_4 \\ u_3 \end{bmatrix}$$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis 66

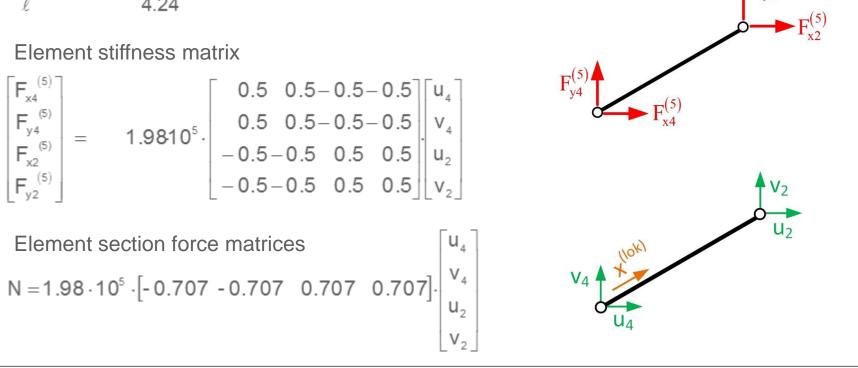
Example: Element stiffness and section force matrices



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

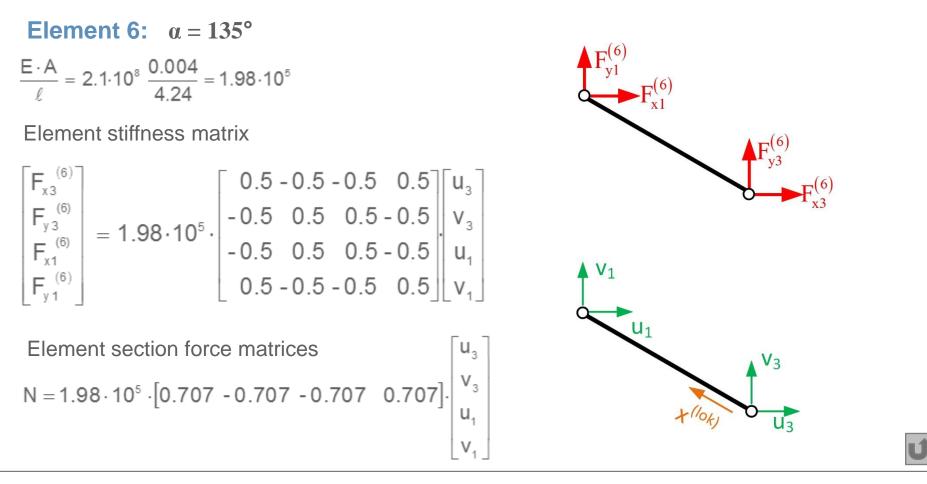
Example: Element stiffness and section force matrices

Element 5: $\alpha = 45^{\circ}$ $\frac{E \cdot A}{\ell} = 2.1 \cdot 10^{\circ} \frac{0.004}{4.24} = 1.98 \cdot 10^{\circ}$



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Example: Element stiffness and section force matrices



Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis