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Methods of structural analysis

2 Truss and beam structures / 2.1 Introduction

Classical methods of structural analysis

• Force method

• Displacement method

Finite Element Method (FEM)

• The Finite Element Method is a generalisation of the displacement method for

structural analysis in matrix notation.

• For truss and beam structures it is also denoted as the

Direct Stiffness Method (DSM).
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Nodal points

here: nodal points 1- 4

Elements 

here: truss elements 1-6

Degrees of freedom

Degrees of freedom are independently

movable displacements or rotations of

nodal points.
here: u1, v1, u2, v2, u3, v3 , u4, v4

Support conditions

Restraints of individual degrees of freedom

here: v3 =0 , u4=0, v4 =0

Introductory example:  Truss system

2 Truss and beam structures / 2.1 Introduction
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Nodal point forces

External forces

here: Fx1,Fy1,Fx2, Fy2, Fx3

Support forces

here: Fy3,Fx4,Fy4

Global coordinate system

Nodal point forces and nodal displacements are

specifed in the global coordinate system.

here: x, y

Sign rule

Nodal point forces and nodal displacements are

positive in the direction of the positive coordinate

axes of the global coordinate system.

Introductory example:  Truss system

2 Truss and beam structures / 2.1 Introduction
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Introductory example:  Truss system

2 Truss and beam structures / 2.1 Introduction

System of equations

• The unknowns are displacements
(displacements and rotations).

• The coefficient matrix is called the global 
stiffness matrix of the system.

• The right-hand side consists of the nodal point
forces, i.e. the loads acting at the nodal points.

v3=u4=v4=0   They are omitted in the matrix due to 

the support conditions 

here:

11 12 13 14 15 1 1

21 22 23 24 25 1 1

31 32 33 34 35 2 2

41 42 43 44 45 2 2

51 52 53 54 55 3 3

x

y

x

y

x

k k k k k u F

k k k k k v F

k k k k k u F

k k k k k v F

k k k k k u F

     
     
     
      =
     
     
     
     
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Global stiffness matrix

2 Truss and beam structures / 2.1 Introduction

11 12 13 14 15 1 1

21 22 23 24 25 1 1

31 32 33 34 35 2 2

41 42 43 44 45 2 2

51 52 53 54 55 3 3

x

y

x

y

x

k k k k k u F

k k k k k v F

k k k k k u F

k k k k k v F

k k k k k u F

     
     
     
      =
     
     
     
     

Characteristics of the system of equations

1. For stable i.e. not kinematic structural systems the system of equations has a 
unique solution. The global stiffness matrix is regular.

2. Diagonal terms are always positive (spring constants)

3. The stiffness matrix is symmetric

4. The global stiffness matrix is assembled from the stiffness matrices of the
finite elements

The solution of the system of equations gives the nodal point displacements.
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Global stiffness matrix

2 Truss and beam structures / 2.1 Introduction

Section forces and element stresses

The section forces and element stresses are determined element by element
using the nodal point displacements. 

here: Normal forces and normal stresses in the truss elements
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Computational steps of the Finite Element Method

2 Truss and beam structures / 2.1 Introduction

1. Determination of the element stiffness matrices and the nodal point loads.

2. Assemblage of the global stiffness matrix with the element stiffness matrices
and of the global load vector with the nodal loads. 

3. Solution of the system of equations with the global stiffness matrix gives the
nodal point displacements. 

4. Determination of the support reactions using the nodal point displacements.

5. Determination of the element stresses / section forces using the nodal point
displacements.

11 12 13 14 15 1 1

21 22 23 24 25 1 1

31 32 33 34 35 2 2

41 42 43 44 45 2 2

51 52 53 54 55 3 3

x

y

x

y

x

k k k k k u F

k k k k k v F

k k k k k u F

k k k k k v F

k k k k k u F

     
     
     
      =
     
     
     
     
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Stiffness matrix in local coordinates

Definition: A beam with normal forces only is called truss element

Element stiffness matrix

Section force

Nodal point displacements

Nodal point forces

11 12 1 1

21 22 2 2

k k u F

k k u F

     
 =     

     
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Elongation of a truss element

Derivation of the stiffness matrix

F

E E A


 


=  =  =



A= Cross section area

E= Young´s modulus

Hooke‘s law:

/E E   =  → =

Normal force

2 1

E A
F with u u 


=  = −

Element forces

( )1 1 2

E A
F F u u


= − = −
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Derivation of the stiffness matrix

Element forces

( )
E A

F u u


= −1 1 2

In matrix notation: Element stiffness matrix

1 1

2 2

1 1

1 1

u FE A

u F

−     
  =    

−     
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix of a truss element in local coordinates

( ) ( ) ( )lok lok lok
K u F =

K(lok) = Element stiffness matrix

Properties of the element stiffness matrix:

• symmetric

• singular, i.e. the „structural system“ is kinematic

1 1

2 2

1 1

1 1

u FE A

u F

−     
  =    

−     
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element section force matrix of a truss element in local coordinates

The element section forces are computed with the element section force matrix (or the

element stress matrix for the stresses) after the nodal displacements for the global system

have been determined. 

Element forces

with

Element section force matrix

  1

2

1 1
uE A

N
u

 
= −   

 

2N F=
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Section forces matrix of a truss element in local coordinates

Normal force

Normal stress

  1

2

1 1
uE A

N
u

 
= −   

 

  1

2

1 1
uE

u


 
= −   

 

(lok)(lok)

σS u = 

Section force matrix

Element stress matrix
(lok)

S


(lok)
S

(lok) (lok)
N S u= 
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Coordinate transformation

Element forces and displacements in global and local coordinates

Truss system                        Element in local coodinates            Element in global coordinates
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Coordinate transformation

Element  forces and displacements in local coordinates

(lok)

( ) 1

(lok)

2

lok u
u

u

 
=  
  

(lok)

(lok) 1

(lok)

2

F
F

F

 
=  
  

Element forces and displacements in global coordinates

( )

1

( )

( ) 1

( )

2

( )

2

e

e

e

e

e

u

v
u

u

v

 
 
 

=  
 
 
 

( )

1

( )

1( )

( )

2

( )

2

e

x

e

ye

e

x

e

y

F

F
F

F

F

 
 
 

=  
 
 
 
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Local coordinates

(element)

Global coordinates

(system)

Coordinate transformation: nodal point displacements

coordinate transformation                 coordinate transformation - truss element

(lok) ( ) ( )

1 1 1

(lok) ( ) ( )

2 2 2

cos sin

cos sin

e e

e e

u u v

u u v

 

 

=  + 

=  + 
e

e

e

e

u

u v

u u

v

 

 

 
 

     
=      

      
 
 

( )

1

(lok) ( )

1 1

(lok) ( )

2 2

( )

2

cos sin o o
    

o o cos sin
(lok)

(lok)

cos sin

sin cos

u u v

v u v

 

 

=  + 

= −  + 
( )e

u T u= 
(lok)
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coordinate transformation                 coordinate transformation - truss element

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Coordinate transformation: nodal point forces

Local coordinates

(element)

Global coordinates

(system)

cos

sin

x x

y x

F F

F F





= 

= 

(lok)

(lok)

( )

1 1

( )

1

( )

2

( )

2

cos

sin

cos

sin

e

x

e

y

e

x

e

y

F F

F F

F F

F F









= 

= 

= 

= 

(lok)

(lok)

1

(lok)

2

(lok)

2

( )

1

( )

1

( )

2

( )

2

cos

sin

cos

sin

e

x

e

y

e

x

e

y

F o

F Fo

oF F

oF









 
 

 
    
 =    
       

   
 

(lok)

1

(lok)

2

( )e
F T F= 

T (lok)
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s
u
b
s
ti
tu

ti
o
n

Coordinate transformation: element stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

s
u
b
s
ti
tu

ti
o
n

Coordinate transformation

of nodal forces
Coordinatetransformation

of nodal point displacements






















−

−



=













(lok )

2

(lok )

1

(lok )

2

(lok )

1

u

u

11

11AE

F

F


































=





















(lok)

2

(lok)

1

(e)

y 2

(e)

x2

(e)

y 1

(e)

x1

F

F

αsino

αcoso

oαsin

oαcos

F

F

F

F

( lo k )T( e )
FTF =





























=













(e)

2

(e)

2

(e)

1

(e)

1

(lok)

2

(lok)

1

v

u

v

u

αsinαcosoo

ooαsinαcos
    

u

u

TKTKuKFo ruTKTF
( l o k )T( e )( e )( e )( e )( e )( l o k )T( e )

=== w i t h

( l o k )( l o k )( l o k ) uKF =
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Coordinate transformation: element stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element







































−

−





















=























(e)

2

(e)

2

(e)

1

(e)

1

(e)

y 2

(e)

x2

(e)

y 1

(e)

x1

v

u

v

u

αsinαcosoo

ooαsincosα

11

11

αsino

αcoso

oαsin

oαcos

AE

F

F

F

F





















−−

−−

−−

−−




=

αsinαcosαsinαsinαcosαsin

αcosαsinαcoscosααsinαcos

αsinαcosαsinαsinαcosαsin

αcosαsinαcosαcosαsinαcos

AE
K

22

22

22

22

(e)



TKTKuKFo ruTKTF
( l o k )T( e )( e )( e )( e )( e )( l o k )T( e )

=== w i t h

TT TK(lok)
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Coordinate transformation: element section force matrix

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Section forces in local coordinates Section forces matrix in global coordinates

Coordinate transformation of nodal displacements

( ) ( )e e
N S u= 

( )

1

( )

1

( )

2

( )

2

cos sin

cos sin

e

e

e

e

u

u vo o

o ou u

v

 

 

 
 

     
=      

      
 
 

(lok)

1

(lok)

2

    

 
( )

( )

lok

1

lok

2

1 1
uE A

N
u

 
 = − 
    

1

1

2

2

cos sin
1 1

cos sin

e

e

e

e

u

o o vE A
N

o o u

v

 

 

 
 

   =  −      
 
  
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Degrees of freedom:

Stiffness matrix:

Section force matrix for normal force:
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Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element
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Element 1: α = 0°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Element stiffness matrix

Element section force matrices

System

Stiffness matrix
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Element  2: α = 90°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Element stiffness matrix

Element section force matrices

System

Stiffness matrix
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Element 3: α = 0°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices

System

Stiffness matrix
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Element 4: α = 90°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices

System

Stiffness matrix
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Element 5:   α = 45°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices

System

Stiffness matrix
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Element 6:   α = 135°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices

System

Stiffness

matrix
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The global stiffness matrix is constructed by assembling the elements at the nodal points.

Compatibility conditions

• Equations of equilibrium at all nodal points

• Compatibility of the displacements at all nodal points

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  
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Equilibrium

at nodal point 1:

Introductory 

Example

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  
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Equilibrium

at nodal point 2:

Introductory 

Example

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  
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Nodal point 1

Nodal point n

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  

Element forces of

the truss elements

External forces

(loads)

Element forces External forces

(loads)
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The element forces are expressed by the element stiffness matrices.

Introductory example

element

forces at

nodal point 1

element

forces at

nodal point 2

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  

Element 1

Element 4 

Element 6

Element 1

Element 2

Element 5
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The element stiffness matrices are expanded with zeroes for all degrees of freedom

of the system.

Introductory example, element 1:

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  

( 1 )( 1 )
FuK =

(1 )(1 )

FuK ˆˆ =

Element 1
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Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  

The element stiffness matrices are expanded with zeroes for all degrees of freedom

of the system.

Introductory example, element 2: ( ) 

















−

−
=









2

35

2

y 2

(2)

y 3

v

v

11

11
102.80

F

F ( 2 )( 2 )
FuK =

(2 )(2 )

FuK ˆˆ =

Element 2
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Expanded matrix for element i :

Global stiffness matrix

The global stiffness matrix is assembled from the element stiffness matrix. 

The coefficients of the element stiffness matrix are added to the global stiffness 

matrix at the rows and columns corresponding to their degress of freedom. 

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  

Sum over all elements:

Element forces External forces

(loads)

( ) ( )i iˆ ˆ= F K u

( )i

i

F̂ F=

( i)

KKFuK == ˆw it h

( )i
K̂ Fu =
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Element 1

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix  

Element 1
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Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix

Element 2

Element 2
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Element 3

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix

Element 3
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Element 4

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix

Element 4
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Element 5:

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix

Element 5
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Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix

Element 6:

Element 6
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Load vector

Assembly of the global stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix
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Properties of the stiffness matrix

• symmetric (composed of symmetric element matrices)

• singular, because the structural system is (still) kinematic

Global stiffness matrix without restraints – introductory example

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix

System
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Introductory example Support conditions::

0v

0u

0v

4

4

3

=

=

=

Consideration of the support conditions

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix

Columns are multiplied with 0 

and can be omitted

Unknown restraint forces 

 rows have to be omitted in the 

system of equations

 rows are later used to determine 

the support forces 
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The support forces always

fulfill the equilibrium conditions 

with the nodal forces.

Equations for the support forces

Stiffness matrix with consideration of the support conditions

2 Truss and beam structures / 2.2 Truss element

Global stiffness matrix























−

=















































−

−

−

−−−



0

10

10

0

0

u

v

u

v

u

1.35000.350.35

01.350.3500

00.351.3501.0

0.35001.350.35

0.3501.00.351.35

102.8

3

2

2

1

1

5

System of equations for the displacements 

















=









































−−−

−−−

−−−



y 4

x4

y 3

3

2

2

1

1

5

F

F

F

u

v

u

v

u

00.350.351.00

1.00.350.3500

0.351.000.350.35

102.80

Properties of the global 

stiffness matrix:

- regular

- symmetric
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Nodal point displacements:

 m10

0.18

0.54

1.04

0.18

0.86

u

v

u

v

u

4

3

2

2

1

1

−























−

=























Support forces:

 kN

F

F

F

10.0

10.0

20.0

y 4

x4

y 3

















=

















−

−=

Equilibrium control!

45 10

0.18

0.54

1.04

0.18

0.86

00.350.351.0

1.0.350.3500

0.351.00.350.35

102.80 −























−



















−−−

−−−

−−−



Results

2 Truss and beam structures / 2.2 Truss element

Introductory example
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Element 1:

  5.010
1 .04

0 .86
1 .1 .102 .80N 45

1
=








−= −

Element2:

  15 .010
0 .54

0 .00
1 .1 .102 .80N 45

2
−=









−
−= −

Element 3:

  5.010
0.18

0 .00
1 .1 .102 .80N 45

3
=








−= −

Element 4:

  5.010
0.18

0 .00
1 .1 .102 .80N 45

4
=








−= −

Element 5:

  7.010

0.54

1.04

0.00

0.00

0.710.710.710.71101.98N 45

5
=



















−

−−= −

Element 6:

  7.010

0.18

0.86

0.00

0.18

0.710.710.710.71101.98N 45

6
−=



















−−= −

Results

2 Truss and beam structures / 2.2 Truss element

Introductory example

Section forces:

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6
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Nodal point displacements

Node u [mm] v [mm]

1 0.086 0.018

2 0.104 -0.054

3 0.018 0

4 0 0

Support forces Node Fx [kN] Fy [kN]

3 - 20

4 -10 -10

Element

forces

Element N [kN]

1 5.0

2 -15.0

3 5.0

4 5.0

5 7.0

6 -7.0

Results

2 Truss and beam structures / 2.2 Truss element

Introductory example
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• Elements should be appropriately connected with nodes

• Kinematic structural systems lead to unsolvable systems of

equations. 

Possible program responses could be: stiffness matrix is

singular, determinant is zero, program abort)

• Stiffness parameters as cross section areas, moments of

inertia (for beams in bending), etc. are always to be entered

in the program in order to establish the stiffness matrices. 

• Support forces always fulfill the equilibirium conditions with

the external loads.

Conclusions

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures

Example 1

Example 2

Example 3
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End

Introduction

2 Truss and beam structures

Plate and shell structures

Modeling
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Examples for erroneous system parameters - Example 1

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures
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Examples for erroneous system parameters - Example 1

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures
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Examples for erroneous system parameters - Example 1

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures
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Examples for erroneous system parameters - Example 1

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures
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Element definition (erroneous):

Element number Node 1 Node 2

1 1 2

2 2 3

3 3 4

Error diagnostics:
Nodal point 5 has been defined and is loaded by a force F. 

However it is not connected to the FE system.  Node 5 is a 

„pending node“..

Element number Node 1 Node 2

1 1 2

2 2 5

3 5 3

4 3 4

Element definition (correct):

Pending node!

Examples for erroneous system parameters - Example 1

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures
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Problem

Rectangular finite elements in two

adjoining regions of a plate have

been generated by a FE Program. 

Attention! The elements at the

common interface are NOT 

connected unless special

elements for this purpose are

used. FE nets have to be checked

carefully!

Examples for erroneous system parameters - Example 2

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures



Prof. Dr.-Ing. Horst Werkle

Finite Elements in Structural Analysis 01/23

59

Problem:

A instable system is entered 

into a FE program. What is 

the response of the 

program?

Instable system !

Examples for erroneous system parameters - Example 3

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures
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Error message of 

the program! 

Examples for erroneous system parameters - Example 3

2 Truss and beam structures / 2.2 Truss element

FEM for truss and beam structures
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Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

   y

x             

v1 v2

u2u1

v4=0

u4=0 u3=0

1

4 3

2

24

1

3
v3=0
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Element stiffness matrix

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Element section force matrix
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2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Degrees of freedom:

Stiffness matrix:

Section force matrix for normal force:
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Element 1: α = 0°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Element stiffness matrix

Element section force matrices
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Element  2: α = 90°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element

Element stiffness matrix

Element section force matrices
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Element 3: α = 0°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices
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Element 4: α = 90°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices
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Element 5:   α = 45°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices
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Element 6:   α = 135°

Example:  Element stiffness and section force matrices

2 Truss and beam structures / 2.2 Truss element

Element stiffness matrix of a truss element 

Element stiffness matrix

Element section force matrices
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