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2 Truss and beam structures / 2.3 Spring elements

Stiffness matrix

Spring elements
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2 Truss and beam structures / 2.3 Spring elements

Example 1

Modification of the stiffness matrix
by springs k, at nodal points 1 and 3

Spring k, at nodal point 1 R” ~k /2.8.10°
N X1 .

lc 5
Spring k, at nodal point 3 Kis = kx3 /12.8-10

u, V. u, v, u,
135 PR -035 10 0  -035 |[u] [ 0]
035 135 0 0 035 ||v,| | O
2.810°-| —1.0 0 135 035 0 |u |=| 10
0 0 035 135 0 v,| |-10
| 035 035 0 0 1359kal/|u| | 0 |
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Beam element with element load

(lok)
y(Iok) ) Beam element V1 Section forces
T 1 ’ 2 M1 (T l) M2
5 (0K |
lok lok

T T Displacements T ; T} External forces

(Iok Iok

lo l\ 0[\ )

(/)w
Signs: positive in the direction of positive local coordinates

Deriviation of the stiffness matrix
L g (lok) bk ) (lok)
F. .F. .M .M, are the restraint forces and moments, resulting from displacements

. [lok) [lok) [lok) [lok)
and rotations V., ,@. ,V, ,@, aswellas from the element load q(x(°W) .
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the displacement of nodal point 1

(lok) 3 (lok) (lok) 3 (lok )
F:” =12 -El/ ¢ -V F}f2 =12 -El// -V
(lok) 2 (lok) (lok) 2 (lok)
M =6 -El// -v M -6 -El/¢ -v
z1 1 z2 1
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the rotation of nodal point 1

le(IOk)
(lok) 2 (lok ) (lok) 5 (lok)
F}‘,1 —6-El// C Q. Fy2 - 6-El// L0,
(lok) | (lok) (lok) (lok)
Mﬂ :4-EI!£-(p1 M?_Z :2.E|;g.(p1
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the displacement of nodal point 2

M21(|Ok) ( T

I:y1(lok)
(lok) 3 (lok) (lok) 3 (lok)
Fpp = —12-El/L7 v, Fo  =12-EI/1 v,
(lok) 2 (lok) (lok) 2 (lok)
ME1 = 6 -El// -V, IVI?_2 = -6 -El// "V,
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the rotation of nodal point 2

Mz1 TN \J%TD M22
§| (lok)
y1 P Fy2

F
(lok ) 2 (lok) (lok) 5 (lok)
F}{1 -6 -El// -9, F.v2 — _6.El// -9,
(lok) (lok) (lok ) (lok )
M_, =2-El/1- 9, M., =4 .El/l- g,
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to element loads

q
oo (ML Y .
Fy1 FV2
ok lok
(0):'?:;2 F“__‘z(ﬂ):q:fQ,
: lok
l(fc.-;,) g1 Mﬂ( ok) _ g0 /12
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

12 E-I 6 E-I 12 E-I 6 E-I
(lok) _ (lok) (lok) (lok) (lok) 1
e.g. Fyl 0 — 7.\/1 0 + 7 oK) _ T'VZ ° + 7(02 0 + FL
The terms for the nodal point displacements and The restraint forces and moments due
rotations lead to the stiffness matrix to g lead to the element load vector
12/ 6/ -12/02 6/ | (v, | [F" | R,
E-1| 6// 4 -6/t 2 ||| (M| M,
~12/0* —6/¢ 1270 —6/0||v,”| |F, | | F,
(lok) (lok)
- 6// 2 —6// 4 |loe, | (M, | M,

(lok) F (Iok)
T be

e r —

(lok)
Kbe
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Section forces matrix

Stiffness matrix

F [ 12/¢02  6/¢ 12/ 610 ] [v*] [F,
The section forces le(bk) _E-l 6/( 4 ~6/¢ 2 . (Pl(mk) + M.,
matrix is obtained FE™ | ¢ |-12/¢* —6/¢ 12/¢2 —6/¢||v,”| |F,
from t:he stiffness " o) (k)
matrix with: M, | 6/ 2 -6/¢ 4 Jle, | M,
(Iok) Section forces matrix
V.= F, - ) o o )
M= M @ V, 12/0* 6/¢ —12/¢* 6/0] | v, F,
\/1 FZZok> M,| E|-6/¢ -4 6/0 -2||¢"™ M
2=y V,| ¢ |12/ 6/¢ -12/¢2 6/¢| v, | | -F,
(lok) lok
M,= M, M, | 6/0 2 -6/ 4 ||o]| [ M,
(lok) (lok) (lok)
§ — Sbe ’ be + ELS
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Element load vector for uniformly distributed load

q
oo (LT Y .
Fvl F\/2

(lok) i o
I:yl =q-L12 F . q-(/2
M, — g2 My | | q-*/12
FyZ(IOk) Y. F, q-€2/2

(l0k) ) M| |-q-07/12]
MZZ :—q'g /12
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Stiffness
matrix

(lok)
I(be

I ’ be

(lok) o F: (lok)
- L _be

Section forces
matrix

(lok) (lok)
ES — gibe ’ Lj

“he
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2 Truss and beam structures / 2.4 Beams in bending

Element loads of a beam

Consideration of element loads:

* For the computation of the global system the element loads will be replaced by

nodal forces and moments (equivalent nodal loads) F_,

I\/IL2

« The equivalent loads are the support reactions of the fixed beam, applied with

opposite sign on the global system.

M1 q(x"") My,
(Iok)
y
o 3
X" FLi1 FL2

Positive direction of the
support reactions

Element
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2 Truss and beam structures / 2.4 Beams in bending

Element loads of a beam

Example 2: Element loads on a simple beam system

3 :
System: B For a global system with
0 L7 L three beam elements the
30 section forces are
determined by means of

equivalent nodel point loads.

Equivalent nodal loads:

g g |2/1 qI2/12
ql/2 ql/2 q
e+ )/—% ==
A qen2 “qer2 V7 4
q q ql/zf 4q1/2
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2 Truss and beam structures / 2.4 Beams in bending

Element loads of a beam

Example 2: Element loads on a simple beam system

12/12 ql?/12

iti ql/2 ql/2
Superposition //I v ¥ I ¥
T2 + 2
ql*/12 ql*/12 ql/zf Aal/2
1/2 /2 /2
Shear forces 1 -_- + q_\f :q H
-ql/2 -ql/2 -ql/2
-13q1%/36 13q1°/36 -13q1°/36 -13ql°/36
-ql*/12 -ql*/12
Moments : - 4+ —— =
5q1°/36 ql*/12 ql’/24
19q1°/72
System with Beam with element Superposition of the
equivalent loads load fixed on both sides section forces
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2 Truss and beam structures / 2.4 Beams in bending

Element loads of a beam

Consideration of element loads with equivalent nodal loads

. Determination of restraining forces and moments of the loaded element fixed
at both ends.

. Application of the restraining forces and moments with opposite sign on the
global structural system as nodal loads (equivalent nodal loads).

. Computation of the global system with the equivalent nodal loads.

. Superposition of the section forces due to the element load on the restrained
element with the section forces of the global structural system.
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2 Truss and beam structures / 2.4 Beams in bending

Element loads of a beam

Example 3: Temperature loading

Element 1 is heated up to 30°C. The normal forces in the elements have to be determined.

At=230°

- L
— - "1

N=-302 kN

Equivalent
nodal point loads

System Beam fixed at both ends

Equivalent nodal forces

F=E-A-a A F=2.1-10°-0.004 -1.2-10"°- 30 =302 kN N = -302 kN
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2 Truss and beam structures / 2.4 Beams in bending

Element loads of a beam

Example 3: Temperature loading

System of equations:

(135 -035 -1. 0 -0.35][u| [-302 u, | [-0.540
-035 1.35 0 0 0.35 vV, 0 v, -0.112
2.80-10° | -1. 0 1.35 0.35 0 u, [=| 302 u, 0.428 |-10° m

0 0 0.35 1.35 0 v, 0 v, -0.112
-035 035 0 0 135 ||u; | | O | lu, | | 0112

Normal forces: N, =271.1kN N, = —31.3kN N, = —31.3kN

N,= 5.0kN N, = 44.3kN N,= 44.3kN

-31.3 kN
¢
Superposition: N, =271.1-302.4= —-31.3kN
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2 Truss and beam structures / 2.4 Beams in bending

Beams in bending with longitudinal and shear stiffness

Extension for normal forces and shear stiffness

« Extension by normal forces is required for the analysis of frames etc.

« Shear stiffness is required if shear deformations are significant; they are
normally included in beam elements implemented in FE programs.

Extension of the stiffness matrix

« Longitudinal stiffness: The stiffness matrix of the bending terms of the beam
will be extended by the entries of the truss element.

« Shear stiffness: Solution of the differential equation for the beam with shear
deformation.
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Beam element

£ £ (1K)
yl y2
(lok) (lok)
Fe1 T‘\ T‘\ Fe2 Element forces
— 2 Beam element > ) }>
. le(l()k) I\/lzz(lok)
=]
iy ™M TVI le
= (lok) .
e ey T‘\ Tf}/ .2 Displacements &/ \> Section forces
/ (Iok) \ M, - sz N,
P2
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2 Truss and beam structures / 2.4 Beams in bending

Beams in bending with longitudinal and shear stiffness

Stiffness matrix

[ a, 0 0 -—a 0 o
o 12-a1 6 a, — 12-a1 6 a, _USOK)_ - FX1(Iok) ]
gz f fz f (lok) (lok)
o %% 4 —54  »a " i o)
E ? f ’ . (Pgo ) — le
-4, o 0 a, 0 0 ul || E
o - 12a, -64, 12a, -64, v Fyz(lok)
62 g 62 g (lok) (lok)
. _6- ¢, | M,
0 64, 24, 0 64, 4a, | ) )
_ / / _
| E-A E-l E-l1-(4+m) E-1-(2-m) 12-E-I
with a, = a, = a, = = m =

- — a_ —
/ Y l(Q+m) P 40-Q+m) ° 2-4-(1+m) G-A_ -/
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2 Truss and beam structures / 2.4 Beams in bending

Beams in bending with longitudinal and shear stiffness

Practical hints

« Shear areas for some cross sections:

Cross
section

Shear
area

ty-d 0,9 71 1Tt

« Shear deformations can be excluded by defining a huge value
for the shear area A, , e.g. A, = 1000-A .

« If shear area is set to zero with A, = 0 kinematic mechanisms may occur.

« Some programs define the input A, = O in order to neglect the shear area. In the
program the mechanically correct shear area is set as ,infinite”.
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2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Transformation
of the nodal point
displacements

Local coordinates global coordinates

Coordinate transformation

v (10K)
v U(IOK) O\ V-COSa (lok) .
U-COSd.u_Sina u = U-COSa+V-SIna
¢ ‘mu . v =—u-sina+V -cosa
V-sina
Prof. Dr.-Ing. Horst Werkle 28
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2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Transformation of the
nodal point displacements

global coordinates

Local coordinates

Coordinate transformation for a beam element

(Iok) (e) (&) (Iok) (e) e .
u = u -Cosa+V, -Slha u, — uze 'COSOL-I-VZG .SINna.
(lok) ) i (€) (lok) (e) ' (e)
Vo ==Up -sina+ vV, -Cosa V. =—U."-sin a4+ V.*-cosa
(lok) (e) 0 0
¢, =0 (qu 9 = (pz(I !
29
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2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Transformation of nodal point displacements in matrix notation

(Iok) (e) (e) (Iok) (e) (&) _-
u, = u -Ccosa+V, -Sina u, = U, -COsSa+V, -SIina
(lok) (e) . (e) lok :
v, =-u -sin o+ Vv, -cosa V. =—u'-sin a+ v.-cosa
(lok) (e) (Iok) B (e)
(Pl - (P1 (Pz - (Pz
(lok) ] _ _ _ _U © ]
1 cosa sina o o 0 0 1
(lok) . (e)
1 -sinacosa 0 O 0 ol |V,
0, 0 O 1 o o ol]|9”
2“"” O O O COosSa sina o uz‘e)
(ok 0O O 0 -sina cosa O |y ©
2 2
(1ok) O O 0 0 0 1 ©
_(Pz | - - _(Pz _
(lok) (e)
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2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

(e) Iok) M (|20k)
Coordinate transformation of the F(e) - Fia »
2

nodal forces F
X2

Local coordinates

Coordinate transformation

(lok) (Iok) (lok) -
P, sina F=F " .cosa-F, -sina
K) A .
(k) F,-c05a F = F*.sina +F,".cosa
% I Fy-Sina (lok) y X y
X VV 0 a|F, "cosa
ok)
lok
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2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

' ' (e) (lok)
Coordinate transformation of Mo (10K \M22
2

the nodal forces Fy2 Y
FX2

Fon

(e

o .
r (lok) Local coordinates

X1

X

Coordinate transformation for a beam element

F.” =cosa-F, -sina-F," F,” =cosa-F,” -sina-F,™
F® =sina -F." +cos a-F “ F® =sina-F"“ +cosa-F ™
yl x1 Y1 y2 y2 y2
(@) (10K) (@) (10k)
le - le Mzz = M22
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2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Coordinate transformation of the nodal forces in matrix notation

F.” =cosa-F,* -sina-F,™ F,” =cosa-F,” -sina-F,”
F.” =sina -F,” +cosa-F ™ F,” =sina-F ™ +cosa-F ™
(e) (lok) (e) (lok)
le - le Mzz - MZZ
(e) - _ (oK) ]
F coSa —Sina o 0 O O Fa
E © _ E (%
1 sinada cosa O 0 O O v1
(e) (lok)
M. 0 0 1 0 O O M.
|:X2<e) 0 0 O COSa-—-Sina o FXZ"‘*)
|:y2<e> 0 0 O Sina cosa o |:y2<'°k>
o 0 0 0 0 o 1 0
_MZZ( )_ | | _Mzz(l k)_
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2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Displacements: u (00 =T u ®©

Stiffness matrix: F (oK) = K (ok) =y (lok)
Forces: E® =TT | [ (ok

|:(e) _ -I-T . F(Iok) -_I-T . K(|o|<) . u(lok) :-_I-T . K(|o|<) I 'U(e)

Element stiffness matrix

1 1

Element stiffness matrix Element stiffness matrix
in global coordinates in local coordinates
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2 Truss and beam structures

End

Introduction

2 Truss and beam structures
Plate and shell structures
Modeling
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2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Beam element

F 1(Iok) g 2(lok)
y y y
(lok) (lok)
Fa T‘\ TA\ Fra Element forces
1 —— 2 Beam element » ! >
(lok) ) }
L X ] Mﬂ(lok) MZZ(Iok)
* |
V1(|0k) V2(|Ok) T V, l V,
= (lok) .
o T‘\ T Y2 Displacements Wy [ \ Section forces
) = == 7™
° o M
(pl(l K) o 1o¥ M, 2 2
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