Finite Elements in Structural Analysis

Introduction

2 Truss and beam structures
Plate and shell structures
Modeling

Stiffness matrix

Spring elements

Springs
Spring equations
$F_{x}^{(0)}=k_{x} \cdot u_{i}$
$\mathrm{F}_{\mathrm{y}}^{(\mathrm{e})}=\mathrm{K}_{\mathrm{y}} \cdot \mathrm{V}_{\mathrm{i}}$
$M_{z}^{(e)}=k_{z z} \cdot \varphi_{i}$

Displacements
external forces
$\mathrm{k}_{\mathrm{x}}[\mathrm{kN} / \mathrm{m}]$ $k_{y}[\mathrm{kN} / \mathrm{m}]$ $k_{z z}[\mathrm{kN} \cdot \mathrm{m}]$
Spring constants
Stiffness matrix

2 Truss and beam structures / 2.3 Spring elements

Example 1

Modification of the stiffness matrix by springs k_{x} at nodal points 1 and 3

Spring k_{x} at nodal point $1 \quad \overline{\mathrm{k}}_{\mathrm{x} 1}=\mathrm{k}_{\mathrm{x} 1} / 2.8 \cdot 10^{5}$
Spring k_{x} at nodal point $3 \overline{\mathrm{k}}_{\mathrm{x} 3}=\mathrm{k}_{\mathrm{x} 3} / 2.8 \cdot 10^{5}$

$2.8 \cdot 10^{5} \cdot\left[\begin{array}{ccccc}u_{1} & v_{1} & u_{2} & v_{2} & u_{3} \\ 1.35+\overline{\mathrm{k}}_{\times 1} & -0.35 & -1.0 & 0 & -0.35 \\ -0.35 & 1.35 & 0 & 0 & 0.35 \\ -1.0 & 0 & 1.35 & 0.35 & 0 \\ 0 & 0 & 0.35 & 1.35 & 0 \\ -0.35 & 0.35 & 0 & 0 & 1.35+\bar{k}_{\times 3}\end{array}\right] \cdot\left[\begin{array}{c}u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 10 \\ -10 \\ 0\end{array}\right]$

2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Beam element with element load

Signs: positive in the direction of positive local coordinates
Deriviation of the stiffness matrix
$F_{y 1}^{(l d)}, F_{y_{2}}^{(\text {lok })}, M_{1}^{(l k)}, M_{2}^{(0 k)}$ are the restraint forces and moments, resulting from displacements
and rotations $\mathrm{V}_{1}^{(10 \mathrm{~K})}, \varphi_{1}^{\text {(Iok) }}, \mathrm{V}_{2}^{\text {(lok) }}, \varphi_{2}^{\text {(Iok) }}$ as well as from the element load $\mathrm{q}\left(\mathrm{x}^{(\mathrm{OK})}\right)$.

2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the displacement of nodal point 1

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{y} 1}^{(\text {lok })}=12 \cdot \mathrm{El} / \ell^{3} \cdot \mathrm{v}_{1}^{(\text {lok })} & \mathrm{F}_{\mathrm{y} 2}^{(\text {lok })}=-12 \cdot \mathrm{El} / \ell^{3} \cdot \mathrm{v}_{1}^{(\text {lok) }} \\
\mathrm{M}_{\mathrm{z}^{(\text {lok })}}=6 \cdot \mathrm{El} / \ell^{2} \cdot \mathrm{v}_{1}^{(\text {lok })} & \mathrm{M}_{\mathrm{z}^{(\text {lok })}}=6 \cdot \mathrm{El} / \ell^{2} \cdot \mathrm{v}_{1}^{(\text {lok })}
\end{array}
$$

2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the rotation of nodal point 1

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{y} 1}^{(\mathrm{lok})}=6 \cdot \mathrm{El} / \ell^{2} \cdot \varphi_{1}^{(\text {lok })} & \mathrm{F}_{\mathrm{y} 2}^{(\text {lok })}=-6 \cdot \mathrm{El} / \ell^{2} \cdot \varphi_{1}^{(\text {lok })} \\
\mathrm{M}_{\mathrm{z} 1}^{(\text {lok })}=4 \cdot \mathrm{El} / \ell \cdot \varphi_{1}^{(\text {lok })} & \mathrm{M}_{\mathrm{z}^{(\text {lok })}}=2 \cdot \mathrm{El} / \ell \cdot \varphi_{1}^{(\text {lok })}
\end{array}
$$

2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the displacement of nodal point 2

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{z} 1}{ }^{(\mathrm{lok})}(\underbrace{\mathrm{y}_{\text {(lok) }}}_{\mathrm{F}_{\mathrm{y} 1}}
\end{aligned}
$$

2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to the rotation of nodal point 2

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{y} 1}^{(\mathrm{lok})}=6 \cdot \mathrm{El} / \ell^{2} \cdot \varphi_{2}^{(\mathrm{lok})} & \mathrm{F}_{\mathrm{y} 2}^{(\mathrm{lok})}=-6 \cdot \mathrm{El} / \ell^{2} \cdot \varphi_{2}^{(\mathrm{lok})} \\
\mathrm{M}_{\mathrm{z} 1}^{(\mathrm{lok})}=2 \cdot \mathrm{El} / \ell \cdot \varphi_{2}^{(\mathrm{lok})} & \mathrm{M}_{\mathrm{z} 2}^{(\text {lok })}=4 \cdot \mathrm{El} / \ell \cdot \varphi_{2}^{(\text {lok })}
\end{array}
$$

2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Derivation of the stiffness matrix

Element forces and moments due to element loads

$$
\begin{array}{ll}
F_{y 1}^{(l o k)}=q \cdot \ell / 2 & F_{y 2}^{(l o k)}=q \cdot \ell / 2 \\
M_{z 1}^{(l o k)}=q \cdot \ell^{2} / 12 & M_{z 2}^{(l o k)}=-q \cdot \ell^{2} / 12
\end{array}
$$

Stiffness and section forces matrix of a beam

e.g. $\quad F_{y 1}^{(l o k)}=\frac{12 E \cdot I}{\ell^{3}} \cdot v_{1}^{(l o k)}+\frac{6 E \cdot I}{\ell^{2}} \cdot \varphi_{1}^{(l o k)}-\frac{12 E \cdot I}{\ell^{3}} \cdot v_{2}^{(l o k)}+\frac{6 E \cdot I}{\ell^{2}} \cdot \varphi_{2}^{(l o k)}+F_{L}{ }^{1}$

The terms for the nodal point displacements and rotations lead to the stiffness matrix

The restraint forces and moments due to q lead to the element load vector

$$
\underline{\mathrm{K}}_{b \mathrm{be}}^{(\mathrm{Ok})} \cdot \underline{\mathrm{u}}_{\mathrm{be}}^{(\mathrm{OK})}=\underline{\mathrm{F}}_{\mathrm{be}}^{(\mathrm{Iok})}-\underline{\mathrm{F}}_{\mathrm{bL}}^{(\mathrm{Iok})}
$$

2 Truss and beam structures / 2.4 Beams in bending

Stiffness and section forces matrix of a beam

Section forces matrix

The section forces matrix is obtained from t:he stiffness matrix with:

Section forces matrix

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{1} \\
M_{1} \\
V_{2} \\
M_{2}
\end{array}\right]=\frac{E \cdot I}{\ell} \cdot\left[\begin{array}{cccc}
12 / \ell^{2} & 6 / \ell & -12 / \ell^{2} & 6 / \ell \\
-6 / \ell & -4 & 6 / \ell & -2 \\
12 / \ell^{2} & 6 / \ell & -12 / \ell^{2} & 6 / \ell \\
6 / \ell & 2 & -6 / \ell & 4
\end{array}\right] \cdot\left[\begin{array}{c}
v_{1}^{\text {(Iok) }} \\
\varphi_{1}^{\text {(Iok) }} \\
v_{2}^{\text {(Iok) }} \\
\varphi_{2}^{\text {(Iok) }}
\end{array}\right]+\left[\begin{array}{c}
F_{L 1} \\
-M_{L 1} \\
-F_{L 2} \\
M_{L 2}
\end{array}\right]} \\
& \underline{S}=\mathrm{S}_{\mathrm{be}}{ }^{(\mathrm{IOK})} \cdot \underline{\mathrm{u}}_{\mathrm{be}}{ }^{(\mathrm{Iok})}+\underline{\mathrm{F}}_{\mathrm{Ls}}{ }^{(\mathrm{Iok})}
\end{aligned}
$$

Stiffness and section forces matrix of a beam

Element load vector for uniformly distributed load

$$
\begin{aligned}
& F_{y 1}^{(l o k)}=q \cdot \ell / 2 \\
& M_{z 1}^{(l o k)}=q \cdot \ell^{2} / 12 \\
& F_{y 2}^{(l o k)}=q \cdot \ell / 2 \\
& M_{z 2}{ }^{(l o k)}=-q \cdot \ell^{2} / 12
\end{aligned}
$$

$$
\left[\begin{array}{c}
F_{L 1} \\
M_{L 1} \\
F_{L 2} \\
M_{L 2}
\end{array}\right]=\left[\begin{array}{c}
q \cdot \ell / 2 \\
q \cdot \ell^{2} / 12 \\
q \cdot \ell / 2 \\
-q \cdot \ell^{2} / 12
\end{array}\right]
$$

2 Truss and beam structures / 2.4 Beams in bending
Stiffness and section forces matrix of a beam

Stiffness matrix
 Section forces matrix

Element loads of a beam

Consideration of element loads:

- For the computation of the global system the element loads will be replaced by nodal forces and moments (equivalent nodal loads) $\quad \mathrm{F}_{\mathrm{L} 1}, \mathrm{M}_{\mathrm{L} 1}, \mathrm{~F}_{\mathrm{L} 2}, \mathrm{M}_{\mathrm{L} 2}$.
- The equivalent loads are the support reactions of the fixed beam, applied with opposite sign on the global system.

> Positive direction of the
> support reactions

Example 2: Element loads on a simple beam system

System:

For a global system with three beam elements the section forces are determined by means of equivalent nodel point loads.

Equivalent nodal loads:

Example 2: Element loads on a simple beam system

Superposition

Shear forces

Moments

Element loads of a beam

Consideration of element loads with equivalent nodal loads

1. Determination of restraining forces and moments of the loaded element fixed at both ends.
2. Application of the restraining forces and moments with opposite sign on the global structural system as nodal loads (equivalent nodal loads).
3. Computation of the global system with the equivalent nodal loads.
4. Superposition of the section forces due to the element load on the restrained element with the section forces of the global structural system.

2 Truss and beam structures / 2.4 Beams in bending

Element loads of a beam

Example 3: Temperature loading

Element 1 is heated up to $30^{\circ} \mathrm{C}$. The normal forces in the elements have to be determined.

Equivalent nodal forces

$$
F=E \cdot A \cdot \alpha_{T} \cdot \Delta_{t} \quad F=2.1 \cdot 10^{8} \cdot 0.004 \cdot 1.2 \cdot 10^{-5} \cdot 30=302 \mathrm{kN} \quad N=-302 \mathrm{kN}
$$

Element loads of a beam

Example 3: Temperature loading

System of equations:

$$
2.80 \cdot 10^{5}\left[\begin{array}{ccccc}
1.35 & -0.35 & -1 . & 0 & -0.35 \\
-0.35 & 1.35 & 0 & 0 & 0.35 \\
-1 . & 0 & 1.35 & 0.35 & 0 \\
0 & 0 & 0.35 & 1.35 & 0 \\
-0.35 & 0.35 & 0 & 0 & 1.35
\end{array}\right] \cdot\left[\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
-302 \\
0 \\
302 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{r}
-0.540 \\
-0.112 \\
0.428 \\
-0.112 \\
0.112
\end{array}\right] \cdot 10^{-3} m
$$

Normal forces: $\quad N_{1}=271.1 \mathrm{kN} \quad N_{2}=-31.3 \mathrm{kN} \quad N_{3}=-31.3 \mathrm{kN}$

$$
N_{4}=5.0 \mathrm{kN} \quad N_{5}=44.3 \mathrm{kN} \quad N_{6}=44.3 \mathrm{kN}
$$

Superposition: $\quad N_{1}=271.1-302.4=-31.3 \mathrm{kN}$

Beams in bending with longitudinal and shear stiffness

Extension for normal forces and shear stiffness

- Extension by normal forces is required for the analysis of frames etc.
- Shear stiffness is required if shear deformations are significant; they are normally included in beam elements implemented in FE programs.

Extension of the stiffness matrix

- Longitudinal stiffness: The stiffness matrix of the bending terms of the beam will be extended by the entries of the truss element.
- Shear stiffness: Solution of the differential equation for the beam with shear deformation.

Stiffness and section forces matrix of a beam

Beam element

2 Truss and beam structures / 2.4 Beams in bending

Beams in bending with longitudinal and shear stiffness

Stiffness matrix

with $a_{0}=\frac{E \cdot A}{\ell} \quad a_{1}=\frac{E \cdot I}{\ell \cdot(1+m)} \quad a_{2}=\frac{E \cdot I \cdot(4+m)}{4 \cdot \ell \cdot(1+m)} \quad a_{3}=\frac{E \cdot I \cdot(2-m)}{2 \cdot \ell \cdot(1+m)} \quad m=\frac{12 \cdot E \cdot I}{G \cdot A_{s} \cdot \ell^{2}}$

Beams in bending with longitudinal and shear stiffness

Practical hints

- Shear areas for some cross sections:

Cross section					$\rightarrow(\mathrm{r} \rightarrow$
Shear area	$\frac{5}{6} \cdot b \cdot d$	$\frac{5}{3} \cdot t_{1} \cdot b_{1}$	$\mathrm{t}_{\mathrm{w}} \cdot \mathrm{d}$	$0,9 \cdot \pi \cdot \mathrm{r}^{2}$	$\pi \cdot \mathrm{r} \cdot \mathrm{t}$

- Shear deformations can be excluded by defining a huge value for the shear area A_{s}, e.g. $A_{s}=1000 \cdot \mathrm{~A}$.
- If shear area is set to zero with $A_{s}=0$ kinematic mechanisms may occur.
- Some programs define the input $A_{s}=0$ in order to neglect the shear area. In the program the mechanically correct shear area is set as „infinite".

2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Transformation of the nodal point displacements

Local coordinates
global coordinates
Coordinate transformation

$$
\begin{aligned}
& \mathrm{u}^{(\mathrm{lok})}=\mathrm{u} \cdot \cos \alpha+\mathrm{v} \cdot \sin \alpha \\
& \mathrm{v}^{(\mathrm{lok})}=-\mathrm{u} \cdot \sin \alpha+\mathrm{v} \cdot \cos \alpha
\end{aligned}
$$

Coordinate transformation

Transformation of the nodal point displacements

Local coordinates

Coordinate transformation for a beam element
$\mathrm{u}_{1}^{\text {(lok) }}=\mathrm{u}_{1}^{(e)} \cdot \cos \alpha+\mathrm{v}_{1}^{(\mathrm{e})} \cdot \sin \alpha \quad \mathrm{u}_{2}^{\text {(ok) }}=\mathrm{u}_{2}^{(\mathrm{e})} \cdot \cos \alpha+\mathrm{v}_{2}{ }^{(\mathrm{e})} \cdot \sin \alpha$
$\mathrm{V}_{1}^{(\mathrm{Ok})}=-\mathrm{u}_{1}^{(\mathrm{e})} \cdot \sin \alpha+\mathrm{V}_{1}^{(\mathrm{e})} \cdot \cos \alpha \quad \mathrm{V}_{2}^{(\mathrm{Iok})}=-\mathrm{u}_{2}^{(\mathrm{e})} \cdot \sin \alpha+\mathrm{V}_{2}^{(\mathrm{e})} \cdot \cos \alpha$
$\varphi_{1}^{(\text {(ok) })}=\varphi_{1}^{(e)}$
$\varphi_{2}^{(\text {Iok })}=\varphi_{2}^{(\text {lok })}$

Coordinate transformation

Transformation of nodal point displacements in matrix notation

$$
\begin{array}{ll}
u_{1}^{(\text {lok })}=u_{1}^{(e)} \cdot \cos \alpha+v_{1}^{(e)} \cdot \sin \alpha & u_{2}^{(\text {Iok })}=u_{2}^{(e)} \cdot \cos \alpha+v_{2}^{(e)} \cdot \sin \alpha \\
v_{1}^{(\text {Iok })}=-u_{1}^{(e)} \cdot \sin \alpha+v_{1}^{(e)} \cdot \cos \alpha & v_{2}^{(\text {Iok })}=-u_{2}^{(e)} \cdot \sin \alpha+v_{2}^{(e)} \cdot \cos \alpha \\
\varphi_{1}^{\text {(Iok) }}=\varphi_{1}^{(e)} & \varphi_{2}^{(\text {IOk })}=\varphi_{2}^{(e)}
\end{array}
$$

$$
\begin{aligned}
& \underline{u}^{(0 \text { (ok) }}=\underline{I} \cdot \underline{u}^{(e)}
\end{aligned}
$$

2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Coordinate transformation of the nodal forces
global coordinates

Coordinate transformation

2 Truss and beam structures / 2.4 Beams in bending

Coordinate transformation

Coordinate transformation of the nodal forces
global coordinates

Coordinate transformation for a beam element

$$
\begin{aligned}
& F_{\mathrm{x} 1}{ }^{(\mathrm{e})}=\cos \alpha \cdot \mathrm{F}_{\mathrm{x} 1}^{(\mathrm{ok})}-\sin \alpha \cdot F_{\mathrm{y} 1}^{(\mathrm{Ok})} \\
& \mathrm{F}_{\mathrm{y} 1}{ }^{(\mathrm{e})}=\sin \alpha \cdot \mathrm{F}_{\mathrm{x} 1}^{(\mathrm{OkN})}+\cos \alpha \cdot \mathrm{F}_{\mathrm{y} 1}^{(\mathrm{OLN})} \\
& M_{z 1}^{(e)}=M_{z 1}^{(\text {(ok) }} \\
& F_{x 2}^{(e)}=\cos \alpha \cdot F_{x 2}{ }^{\text {(otk) }}-\sin \alpha \cdot F_{y 2}^{\text {(okk) }} \\
& F_{y_{2}}{ }^{(e)}=\sin \alpha \cdot F_{y_{2}}{ }^{(0 k)}+\cos \alpha \cdot F_{y_{2}}{ }^{(\text {(ok) }} \\
& M_{z 2}{ }^{(\text {e })}=M_{z 2}^{(\text {(ok) }}
\end{aligned}
$$

Coordinate transformation

Coordinate transformation of the nodal forces in matrix notation

$$
\begin{aligned}
& F_{x 1}^{(e)}=\cos \alpha \cdot F_{x 1}^{(0) k)}-\sin \alpha \cdot F_{y 1}^{(0)} \\
& F_{y 1}^{(e)}=\sin \alpha \cdot F_{x 1}^{(0) k}+\cos \alpha \cdot F_{y 1}^{(0 k)} \\
& F_{x 2}{ }^{(0)}=\cos \alpha \cdot F_{x 2}{ }^{(0 \mathrm{ok})}-\sin \alpha \cdot F_{y 2}^{(\text {(ok) }} \\
& F_{y_{2}}{ }^{(e)}=\sin \alpha \cdot F_{y_{2}}^{(0 k)}+\cos \alpha \cdot F_{y_{2}}^{(\text {(ok) }} \\
& M_{z 1}{ }^{(\text {en }}=M_{z 1}^{(\text {(ok) }} \\
& M_{z 2}{ }^{(\text {et })}=M_{z 2}^{(\text {(ok) }}
\end{aligned}
$$

Coordinate transformation

$$
\begin{aligned}
& \text { Displacements: } \quad \underline{\mathbf{u}}^{(\text {lok })}=\underline{\mathbf{T}} \quad \cdot \underline{\mathrm{u}}^{(\mathrm{e})} \\
& \text { Stiffness matrix: } \quad \underline{\mathrm{F}}^{(\text {lok })}=\underline{\mathrm{K}}^{(\text {lok })} \cdot \underline{\mathrm{u}}^{(\text {lok })} \\
& \text { Forces: } \underline{F}^{(\mathrm{e})}=\underline{T}^{\top} \cdot \underline{F}^{(\text {lok })} \\
& \underline{\mathrm{F}}^{(\mathrm{e})}=\underline{\mathrm{T}}^{\top} \cdot \underline{\mathrm{F}}^{(\mathrm{lok})}=\underline{\mathrm{T}}^{\top} \cdot \underline{\mathrm{K}}^{(\mathrm{lok})} \cdot \underline{\mathrm{u}}^{(\mathrm{lok})}=\underline{\mathrm{T}}^{\top} \cdot \underline{\mathrm{K}}^{(\mathrm{lok})} \cdot \underline{\mathrm{T}}^{\left(\underline{\mathrm{u}}^{(\mathrm{e})}\right.}
\end{aligned}
$$

Element stiffness matrix

Element stiffness matrix in global coordinates

Element stiffness matrix in local coordinates

End

Introduction
 2 Truss and beam structures
 Plate and shell structures
 Modeling

Stiffness and section forces matrix of a beam

Beam element

