Finite Elements in Structural Analysis

Introduction

2 Truss and beam structures

Plate and shell structures Modeling

Beams in bending

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Beams in bending

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Beams in bending

Modeling of the eccentricity by beam elements with large stiffness

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Supports in the direction of the global coordinate system

Definition by fixing individual

degrees of freedom

or

Modeling of inclined supports

- Kinematic coupling conditions
- Spring with large stiffness
- Truss element with large stiffness

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Beam

element

Truss element with large stiffness and large force F_0 •

•

•

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Example: Influence of support conditions

Case 1: 2D-Model of a continuous beam

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Example: Influence of support conditions

Case 2: All side simply supported 3D-beam

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

8

Example: Influence of support conditions

Case 3: 3D-Model of a continous beam with torsion restraint at the right bearing

For an angle $\phi \neq 0$ a fixing of the torsional degree of freedom of the right beam is required in order to transfer the bending moment M_{li} !

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Example: Influence of support conditions

Result:

3-D systems with torsional degrees of freedom must be modeled carefully !

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Displacement and rotational springs allow the modeling of any elastic flexibility of supports and elastic restraints.

Example: Modeling of a simply supported beam as equivalent spring

Instead of the 3D system, only a 2D-system has to be analysed.

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Example: Modeling of a simply supported beam as an equivalent spring

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Replacement of adjacent beams by equivalent spring elements

System		Spring constant	
	$F = k_v \cdot \delta$	$k_v = \frac{E \cdot A}{\ell}$	
φ Λ	$M = k_{\phi} \cdot \phi$	$\mathbf{k}_{\varphi} = \frac{3 \cdot \mathbf{E} \cdot \mathbf{I}}{\ell}$	
φ	$M = k_{\phi} \cdot \phi$	$\mathbf{k}_{\varphi} = \frac{4 \cdot \mathbf{E} \cdot \mathbf{I}}{\ell}$	
<i>p</i>	$M = k_{\phi} \cdot \phi$	$k_{\varphi} = \frac{4 \cdot \ell \cdot k_{o} + 12 \cdot E \cdot I}{4 \cdot \ell + \ell^{2} \cdot k_{o} / E \cdot I}$	
EA = Longitudinal stiffness EI = Bending stiffness		ℓ = Length of a beam $k_{\phi}^{=}$ Rotational spring constant	

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Condition: All springs have the same displacement

Derivation: $F = F_1 + F_2 + F_3 \qquad F_1 = k_1 \cdot \delta \qquad F_2 = k_2 \cdot \delta \qquad F_3 = k_3 \cdot \delta$ $k \cdot \delta = k_1 \cdot \delta + k_2 \cdot \delta + k_3 \cdot \delta \implies k = k_1 + k_2 + k_3 \qquad \text{with } \delta = F / k$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Forces in individual springs:

$$\mathsf{F}_1 = \mathsf{F}_2 = \mathsf{F}_3 = \mathsf{F}$$

Spring constant:

01/23

Condition: All springs have the same force

Derivation:
$$\delta = \delta_1 + \delta_2 + \delta_3$$
 $\delta_1 = F/k_1 \quad \delta_2 = F/k_2 \quad \delta_3 = F/k_3$
 $F/k = F/k_1 + F/k_2 + F/k_3 \implies 1/k = 1/k_1 + 1/k_2 + 1/k_3$

Real system

Equivalent system

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

The bending stiffnesses of beams 1 and 2 are represented by rotational springs:

$$k_{\varphi 1} = \frac{3 \cdot E \cdot I_1}{\ell_1} \qquad k_{\varphi 2} = \frac{4 \cdot E \cdot I_2}{\ell_2}$$

Springs in parallel

$$\mathbf{k}_{\varphi} = \mathbf{k}_{\varphi 1} + \mathbf{k}_{\varphi 2} = \frac{\mathbf{3} \cdot \mathbf{E} \cdot \mathbf{I}_{1}}{\ell_{1}} + \frac{\mathbf{4} \cdot \mathbf{E} \cdot \mathbf{I}_{2}}{\ell_{2}}$$

Example: Column with variable cross section

The stiffness of the column is represented by springs:

$$\mathbf{k}_1 = \frac{\mathbf{E} \cdot \mathbf{A}_1}{\ell_1} \qquad \mathbf{k}_2 = \frac{\mathbf{E} \cdot \mathbf{A}_2}{\ell_2}$$

Springs in series:

$$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} = \frac{\ell_1}{E \cdot A_1} + \frac{\ell_2}{E \cdot A_2}$$

$$k = \frac{E \cdot A_1 \cdot A_2}{A_2 \cdot \ell_1 + A_1 \cdot \ell_2}$$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

The computational effort for large symmetrical finite element systems can be reduced by taking advantage of the symmetry of the system.

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

The computational effort for large symmetrical finite element systems can be reduced by taking advantage of the symmetry of the system.

Example: Symmetric frames

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Symmetry conditions of plane symmetrical systems

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Stresses and section forces in symmetrical systems

System	Section force/	Loading	
	Stress component	symmetric	anti-symmetric
Beam structures	 Bending moments Normal forces Torsional moments Deflection 	symmetric	anti-symmetric
	Shear forces	anti-symmetric	symmetric
Plates in plane stress	Normal stressesDeflection	symmetric	anti-symmetric
	Shear stresses	anti-symmetric	symmetric
Plates in bending	Bending momentsShear forcesDeflection	symmetric	anti-symmetric
	Twisting moments	anti-symmetric	symmetric

Example: Structural slab with several symmetry axes

Partial system of one quarter of the plate

Structural slab

Equivalent partial system

The system could be further simplified to one-eighth of the actual system. However in this case inclined supports have to be defined.

Example: Superposition for anti-symmetric loads

System with one axis of symmetry

Example: Superposition for anti-symmetric loads

System with two axes of symmetry

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Sources of errors

- **Types of error:** Error in the computational model
 - Input error
 - Numerical error
 - Program error

Detectable errors of the program:

- inconsistent input data
- kinematic mechanisms
- physically meaningless material and cross section parameters

Most errors cannot be detected by the FE program!

Possible sources of errors

Input errors

Causes:

- Inattention
- Misunderstanding of the program manual
- Misleading information in the program manual.

Remedies:

- Plausibility control of the solutions
- Conclusive careful inspection of all statically relevant input data.

The most frequent type of error!

Possible sources of errors

Program error

Errors in the program code: Rare, but can never be excluded!

Especially critical are rarely used program functions

Example

A program for the analysis of frame structures reveals a program bug when the load case of a moment on a beam as element load is calculated. In the previous version the program gave the correct result.

Possible sources of errors

Numerical errors

Numbers in computations have a *finite* numerical accuracy.

Example: Pocket calculator

 $1000 + 1 - 1000 = 1 \quad \text{ok}$ $10^{20} + 1 - 10^{20} = 0 \quad \text{error, i.e. the calculator has less than 20 digits mantissa accuracy}$ $10^{9} + 1 - 10^{9} = 1$ $10^{10} + 1 - 10^{10} = 0 \quad \text{The calculator used has 9 digits mantissa accuracy}$

When assembling the element stiffness matrices into the global stiffness matrix, all significant digits may be lost in the case of vastly different terms of the element stiffness matrices!

Possible sources of errors

Numerical errors

Cause: Limited computational accuracy of the computer Numerical values are represented in the computer by a mantissa and exponent Both values are limited due to the limited computer storage capacity.

Example: The number π is represented in single precision (6 digits of the mantissa) as:

Exact: $\pi = 3.1415927...$

With single precision :
$$\pi = 0.314159 \cdot 10^{1}$$

Mantissa Exponent

All other digits are omitted when the number is stored in the computer.

Number representation

2 Truss and beam structures / 2.7 Modeling of beam structures

Quality assurance of finite element analyses of beam systems

Example: Extreme differences in stiffness

To represent a rigid coupling between nodal point 1 and nodal point 2, the element stiffness matrix of element 1 is chosen to be extremely large.

2 Truss and beam structures / 2.7 Modeling of beam structures

Quality assurance of finite element analyses of beam systems

Singular global stiffness matrix!

Mathematical:	Singular global stiffness matrix
Statical:	Element 2 is neglected in structural analysis, i.e. the system is kinematic

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

2 Truss and beam structures / 2.7 Modeling of beam structures

Quality assurance of finite element analyses of beam systems

Example: Extreme differences in stiffness

This effect does not occur if the extremely rigid element will be added to the diagonal, e.g. if it represents a spring.

Example: Element stiffness 2 will be chosen to be extremely large.

Example: Extreme differences in stiffness

numerical values are represented with 15 digits accuracy:

Regular global stiffness matrix!

01/23

Mathematical: Regular global stiffness matrix Statical: Element 2 is taken into account, i.e. the system is not kinematic

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Numerical errors

Example: Extreme differences in stiffness

- Extremly large stiffness differences between neighboring elements must be avoided.
- At the boundary of the finite element system, extremely large siffnesses, e.g. of spring constants, are unproblematic.

Cause

- extreme differences in the stiffness of neighboring elements, e.g. $E \cdot A$, $E \cdot I$, $G \cdot I_{T}$
- extreme differences in the element lengths

Remedies

- Rigid couplings (if available in the program)
- Limitation of the stiffness differences to a physically meaningful measure

Verification

- Every finite element analysis requires an intensive check of its correctness.
- The aim is to avoid sources of error.
- Most important is a critical survey of the program input and output.

Types of error:

- Error in the computational model
- Input error
- Numerical error
- Program error

Verification

Verification of a FE analysis

- **Detection of gross errors:** careful examination of the graphical display of the structural system, its deformations and section forces (eg. check of missing supports, wrong sign of the loading, etc.)
- **Sum-of-the-loads check:** simple hand calculation which may give useful hints in case of gross loading input errors.
- Plausibility check of force and moment diagrams: simple hand calculations on simplified partial models. Check of the equilibrium conditions of the support forces and the total loading.
- Final careful examination of all statically relevant input data.

Verification

Checking in case of termination due to a singular stiffness matrix

- Program termination without any output of results -

- Examination of the support conditions
- Examination for kinematic mechanisms caused by single hinges or by the combination of hinge conditions
- Examination of free nodal points with degrees of freedom not connected with any element
- Examination of the longitudinal, bending, and torsional stiffness of all elements (must be unequal to zero)
- Examination of extreme jumps in the stiffness of neighbouring elements, causing numerical errors

Verification

Checks in the case of doubts about the correctness of the results

A stepwise simplification of the system where the remaining partial system contains the supposed error is a good strategy. Finally a simple system should remain where the error is obvious.

Most extensive control

If there remain doubts about the correctness of the results after a careful examination of the program input and results, a new independent analysis with a different program and by a different person is recommended.

Introduction **2 Truss and beam structures** Plate and shell structures Modeling

Programing language	Type of number	Digits of the Mantissa	Max. exponent
Fortran	real*4	6	≈ 37
	real*8	15	≈ 307
C/C++	float	6	≈ 37
Java	double	15	≈ 307

Representation of floating point numbers in the computer

Example: Influence of support conditions

Case 2: All side simply supported 3D-Model

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

01/23

42