Finite Elements in Structural Analysis

Introduction Truss and beam structures **3 Plate and shell structures** Modeling

1

Finite element method for plate and shell structures

Plate in plane stress

- Plate discretization in elements of finite size (e.g. quadrilateral elements with ~ 1 m side length).
- The elements are connected at the nodal points.

Finite element method for plate and shell structures

Plate in plane stress

System of equations

42 nodes with 2 degrees of freedom each **84** equations

Prof. Dr.-Ing. Horst Werkle **Finite Elements in Structural Analysis**

Finite element method for plate and shell structures

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

4

Finite element method for plate and shell structures

Boundary and transition conditions

Compatibility conditions at the boundaries of adjacent elements

_	Condition	FEM	
1.	Compabitility of the displacements between the nodal points	fulfilled	
2.	Compatibility of the stresses at the element boundaries (Equilibrium conditions)	not fulfilled	

Finite element method for plate and shell structures

Boundary and transition conditions

Example: Two adjacent elements

Displacements

At their common boundary both elements have the same displacements (varying linearly between the nodal points)

Stresses

The upper element has different stresses σ_x , σ_y , τ_{xy} than the lower element.

Violation of the equilibrium conditions !

Finite element method for plate and shell structures

Properties of the displacement-based FEM

The equilibrium between element stresses and external loads are not fulfilled exactly!

Restraint conditions are fulfilled exactly!

- Displacements of adjacent plane stress elements coincide at the boundaries.
- The equilibrium conditions for the stresses are **not** fulfilled exactly at the boundary lines, resulting in a nonrealistic "jump" of the stesses or section forces between elements.
- Support conditions of the displacements are exactly fulfilled at fixed boundaries.
- At free boundaries the equilibrium conditions between the boundary loads and the section forces are **not** fulfilled exactly.

One-dimensional example

Truss element with variable cross section area

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

9

Numerical example:

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Numerical example:

x [cm]	0	100	200	250	300	400	500
u [cm]	0	0.022	0.048	0.064	0.082	0.128	0.201
σ_x [kN/cm ²]	0.200	0.238	0.294	0.333	0.385	0.556	1.000

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Numerical example:

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

12

Stiffness matrix:

Displacements in the truss element

$$u = \frac{\ln\left(\frac{\ell \cdot A_1 + x(A_2 - A_1)}{\ell \cdot A_1}\right)}{\ln\left(\frac{A_2}{A_1}\right)} (u_2 - u_1) + u_1$$

Stresses in the truss element

$$\sigma_{x} = \frac{E \cdot (A_{2} - A_{1})}{(\ell \cdot A_{1} + x (A_{2} - A_{1})) \cdot \ln (A_{2} / A_{1})} \cdot (u_{2} - u_{1})$$

Stiffness matrix

$$\frac{\mathbf{E} \cdot (\mathbf{A}_{2} - \mathbf{A}_{1})}{\ell \cdot \ln \left(\mathbf{A}_{2} / \mathbf{A}_{1}\right)} \cdot \begin{bmatrix} \mathbf{1} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{1} \\ \mathbf{F}_{2} \end{bmatrix}$$

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

14

Stiffness matrix: **Displacements:** $\mathbf{U} = \mathbf{U}_1 + \frac{\mathbf{x}}{\mathbf{p}} \cdot \left(\mathbf{U}_2 - \mathbf{U}_1\right)$ Assumption of a linear U_2 distribution between the nodes. \mathcal{E}_{x} Strains: Stresses: σ_x

U,

 $\varepsilon_{x} = \frac{du}{dx} = \frac{1}{\ell} \cdot (u_{2} - u_{1})$

The fulfillment of the equilibrium of the forces (e.g. $F_1 = \sigma_x \cdot A_1$, $F_2 = \sigma_x \cdot A_2$) is here not possible due to the assumption for the displacements.

Instead, the principle of virtual displacements will be used.

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Stiffness matrix:

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

17

Example: FE approximation versus exact solution

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

18

3 Plate and shell structures / 3.2 Aproximation of the finite element method

Example: FE assumption and exact solution

Stiffness matrix

19

Numerical example: Discretization of a bar into one element

Numerical example: Discretization of a bar into two elements

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis 21

Numerical example: Discretization of a bar into two elements

Example: FE solution and exact solution

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

23

3 Plate and shell structures / 3.2 Aproximation of the finite element method

Example: FE solution and exact solution

Increasing the polynomial degree of the shape functions

Linear displacement shape function

Displacement shape functions with polynomial of degree 2, 3, 4, etc.

3 Plate and shell structures / 3.2 Aproximation of the finite element method

Example: FE solution – quadratic shape functions

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

25

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis 26

Principle of virtual displacements

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

27

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

28

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

29

Element stiffness matrix

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

30

Numerical example: Discretization of a bar into one element

Stiffness relationship:

$$\frac{\mathsf{E} \mathsf{A}_{1}}{\ell} \cdot \begin{bmatrix} \frac{16}{3} + \frac{8}{3}\alpha & -\frac{8}{3} - 2\alpha \\ -\frac{8}{3} - 2\alpha & \frac{7}{3} + \frac{11}{6}\alpha \end{bmatrix} \cdot \begin{bmatrix} \mathsf{u}_{2} \\ \mathsf{u}_{3} \end{bmatrix} = \begin{bmatrix} \mathsf{0} \\ \mathsf{F} \end{bmatrix} \quad \text{with } \mathsf{u}_{1} = \mathsf{0}$$
Displacement:

$$1000 \cdot \begin{bmatrix} 3.200 & -1.067 \\ 4.007 & 0.007 \end{bmatrix} \cdot \begin{bmatrix} \mathsf{u}_{2} \\ \mathsf{u}_{2} \end{bmatrix} = \begin{bmatrix} \mathsf{0} \\ 4.00 \end{bmatrix} \quad \mathsf{u}_{2} = \mathsf{0.065} \quad [\mathsf{cr}]_{\mathsf{r}}$$

 $A1 = 500 [cm^2],$ $A3 = 100 [cm^{2}],$ $E = 1000 [kN/cm^{2}],$ F = 100 [kN]= 500 cml

n $|-1.067 \quad 0.867] [u_3] [100] \quad u_3 = 0.196 [cm]$

Element stresses:

 $\sigma_1 = E \cdot (-3 \cdot u_1 + 4 \cdot u_2 - u_3) / I = 1000 \cdot (4 \cdot 0.065 - 0.196) / 500 = 0.128 [kN/cm^2]$ $\sigma_2 = E \cdot (-u_1 + u_3) / I = 1000 \cdot 0.196 / 500$ $= 0.392 [kN/cm^{2}]$ $\sigma_3 = E \cdot (u_1 - 4 \cdot u_2 + 3 \cdot u_3) / I = 1000 \cdot (-4 \cdot 0.065 + 3 \cdot 0.196) / 500 = 0.656 [kN/cm^2]$

Numerical example: Discretization of a bar into two elements

Stiffness matrix

01/23

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Numerical example: Diskretization of a bar into two elements

Stiffness matrix

Element stresses:

Stresses in element 1: Stresses in element 2:

: $\sigma_1 = 0.191 \text{ [kN/cm^2]} \ \sigma_2 = 0.255 \text{ [kN/cm^2]} \ \sigma_3 = 0.319 \text{ [kN/cm^2]}$: $\sigma_1 = 0.273 \text{ [kN/cm^2]} \ \sigma_2 = 0.545 \text{ [kN/cm^2]} \ \sigma_3 = 0.818 \text{ [kN/cm^2]}$

Example: FE solution and exact solution

Numerical example:

FEM approximation with one and two finite elements with quadratic shape functions

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Example: FE solution and exact solution

Numerical example:

FEM approximation with 4 - 32 elements with linear and guadratic shape functions

Example: Truss element with linear variable cross section area

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

Properties of the Finite element method approximation

- a) The finite element solution approximates the exact solution. Its accuracy is increased by an augmentation of the number of elements or a reduction of the element size.
- b) Elements with higher order shape functions possess greater accuracy than elements with low shape functions.
- c) For elements based on displacement shape functions only, the approximated nodal point displacements are in general too small, i.e. the system behaves too stiffly.
- d) The finite element approximation is better in regions with low stress gradient, compared to regions with higher stress gradient, if the element size is uniform.
- e) The element stresses in the middle of the element have a greater accuracy than those at the element boundaries.
- f) The 'jump' of the stresses between two adjacent elements is a measure for the accuracy of the analysis at this point.

3 Plate and shell structures

Introduction Truss and beam structures **3 Plate and shell structures** Modeling

Example: FE assumption and exact solution

Stiffness matrix

Stiffness matrix:

Prof. Dr.-Ing. Horst Werkle Finite Elements in Structural Analysis

41