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4 Modeling and quality assurance /4.1 Introduction

Structural models

Physical structure

‘ Modeling error
Structural model
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4 Modeling and quality assurance /4.1 Introduction

Some topics in FE modeling

Content

* Element discretization

e Singularities

« Some pitfalls in structural modeling
* Interpretation of the results

* Quality assurance of FE results
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4 Modeling and quality assurance /4.2 Element discretization

Rules for the modeling of plate regions

! VYV VVYVYVYVYVYVYVYVYVYVVYVYVYVYVYVVYVYYVY

YYVY VVVVVLV

Plate regions

* Nets should be regular
* Element dimensions: approx. 8 -12 elements on the shorter side of a plate region
« Stress singularities at corners

* Plate parts subjected to bending should be modeled suitably
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4 Modeling and quality assurance /4.2 Element discretization

Element types and meshing

Rules for finite element meshes

* For numerical accuracy, best element shapes are square or rectangular.
« Quadrilateral elements should be preferred to triangular elements.

« A mesh consisting purely of quadrilateral elements has to be preferred to a mixed element
topology consisting of triangles and quadrilaterals.

* For a constant accuracy, element meshes have to be refined in areas with a high stress
gradient.

« Size changes of elements should be smooth to avoid “artificial stiffness jumps” due to meshing.

« Stiffness “jumps” due to changes of the plate thicknesses are not allowed to be arbitrarily large.
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4 Modeling and quality assurance /4.2 Element discretization

Examples: meshing with quadrilateral elements

Mesh refinement at a point Triangular

N T & %
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Mesh refinement in one direction transition to halfspace Circle
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4 Modeling and quality assurance /4.2 Element discretization

Element type and meshing

Example: regularity of FE meshes

Cantilever plate with a line load

Comparison of 3 FE meshes and two

 a

element types

ANMNNNRNNRNRNRRRRRE

» Hybrid plate element
(Kirchhoff plate theory)

» Deformation based plate element
(Mindlin plate theory)

OITOIIIIIIIIRY, 7~

A3

o)

1=10,q =5, d /1=0.1

N

t = taper

d= plate thickness
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4 Modeling and quality assurance /4.2 Element discretization

Element type and meshing

Example: regularity of FE meshes

Cantilever plate with a line load

\HI]‘ \ﬂl]‘
A Exact solution:
/ : A
/A
Y : £ | v. =0 — v/gq= 1.00
7 | A /
2 : g mx=—q~E — m /(q-/)=-0.500
/|
|
- q
Y
]
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4 Modeling and quality assurance /4.2 Element discretization

Element type and meshing

Example: regularity of FE meshes

FE-mesh 1: regular mesh

Hybrid plate element Deformation based plate element
. . A mJ(al) v/q mJ/(al) v/q
z 6 |
Y é T -0.5005 ] 0.998 -0.5005 ] 1.00
/ A ] ]
/ A
/ rA | -
/ A
/ £ |16 6 - |
/ rA
/ A | -
Y A — —
/ A
/ A — =
/ A
/ K | -0.5005 1 0.998 -0.5005 1 1.00
6 | HYB V_SW
q A
% y =10 alb=1  o=90° t=1
t/1=0.1 . .
Shape factors: alb=1  q=90° FE internal forces (section A-A)
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4 Modeling and quality assurance /4.2 Element discretization

Element type and meshing

Example: regularity of FE meshes

FE-mesh 2: irregular finite element mesh with mixed element topology

Hybrid plate element Deformation based plate element
& 1 A 6 m.,/(q1) v,/q m,/(ql) v,/q
é NN 1.475 ﬂJ 1.14
/ A H H
/ rA
7 A
/ A H
y z 6 g% 10 13 1.406 | 0.513
z 7 -
A | 0.5095 —
y A | | |
/ o A HYB V-SW
10
q
1 y
A
t/1=0 _ _
Shape factors: a/b=1.8 ~ a=35° FE internal forces (section A-A)
Prof. Dr.-Ing. Horst Werkle 10

Finite Elements in Structural Analysis 01/23



4 Modeling and quality assurance /4.2 Element discretization

Element type and meshing

Example: regularity of FE meshes

FE-mesh 3: irregular finite element mesh with rectangular elements

A
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6

le
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ORIIIIIIOIIINRN, 1~

o)
>
=
o
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<

t/1=0.063
Shape factors : a/b=1.9 o=59°

Hybrid plate element

m,/(a1)

v,/q

HYB

1 -0.5023

Deformation based plate element

1.328

m,/(q°l) v,/q

;-0.514 % 1.07
A
I

L

V_SW

FE internal forces (section A-A)
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4 Modeling and quality assurance /4.2 Element discretization

Element type and meshing

Example: regularity of FE meshes

Influence of slab thickness on numerical accurity of shear forces

ELEMENT TYPE slab thickness d v,/q - FE-mesh 2 v, /q - FE-mesh 3
exact for all d 1.00 1.00
hybrid plate element for all d 1.50 (50%) 1.33 (33%)
0.02-¢ 2.15 (115%) 1.52 (52%)
deformation based 0.05.-7 1.45 (45%) 0.76 (24%)
plate element
0.10-/ 1.14 (14%) 0.85 (15%)
0.30-/ 1.03 ( 3%) 1.03 ( 3%)
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4 Modeling and quality assurance /4.2 Element discretization

Element type and meshing

Example: regularity of FE meshes

Results
5 . A rectangle is the numerically most
é insensitive element shape.
A
g . Distorted elements may result in large
é errors in the internal forces. This
é applies especially for numerically sensitive
1’4 values, e.qg. shear forces of slabs.
7
. For plate elements with shear deformations
q the accuracy of shear forces
ﬁ A\ increases with an increasing plate
A thickness.
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4 Modeling and quality assurance /4.2 Element discretization

Example: Cylindrical shell with water pressure

Analytical solution

— Cylindrical tank with constant wall thickness

:T Ring tension force

| N¢=Y-r-{h—x—h-eK'X"-cosﬂdr(i—hj-eK'X/r-sinﬂ}

r K

Bending moment

M, =- rrt (L—hj-e“'x/r-cosK—'X+h-eK'X/r-sinK—'X
J12- (=) [k r r
r.2

szs.t—zﬁ-w)
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4 Modeling and quality assurance /4.2 Element discretization

Example: Cylindrical shell with water pressure

Sectional forces by FEM and analytical solution

Parameters: h=55m,r=3.0m,t=0.28 m, y=0.2, x=0

0,28
v —— ——
N My,
o
Lo
)
6,00
120 kKN/m 11,8 KNm/m
System analytical sectional forces acc. to Fligge
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4 Modeling and quality assurance /4.2 Element discretization

Restraining moments in shells

* peak values are abtained at the restraints.
* restraining moments rapidly decay, since membrane action prevails.

« Elastic restraints instead of rigid restraints reduces the peaks of the sectional
forces considerably.

* Aboundary layer with twidth fo must be discretizised with finer elements.

Width of the boundary layer:

) = /t T r . radius of the cylinder
0

t : wall thickness
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4 Modeling and quality assurance /4.2 Element discretization

[////[/-/l//

—— \
\\\ Boundary layer:
—~—1_ '\\
S
~—{ 0, =A/t-r =40.28-3.0 =0.917m
—
I é:; Element size:
LT e=h/10=5.5/10 =0.55 m
=
/
T lo/e =0.91/0.55 =1.67
__—-4//
___,// —> Boundary layer requires a finer meshing!
— Cylindrical shell
Finite element modell with e =h/10
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4 Modeling and quality assurance /4.2 Element discretization

14 m v n

Element size [m] 0 y y ‘
e [KNm/m]  (%Fehler) [KN/m] [KN/m]
analytical - - 11.87 ( 0%) 36.2 120.0
FEM 0.917 1 8.71 (27%) 13.9 123.0
0.550 1.67 10.58 (11%) 21.5 119.9
0.458 2 10.95 ( 8%) 23.8 116.9
0.229 4 11.60 ( 2%) 29.8 117.0

Sectional forces of the shell
Result

A minimum number of 4 elements is required in the boundary layer of width fo , Iif the
boundary is fixed. In the case of an elastically restrained boundary, less elements may be
sufficient.
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Definition

In mathematics, a singularity is in general a point at which a given
mathematical object is not defined, or a point of an exceptional set
where it fails to be well-behaved in some particular way, such as

differentiability. (Wikipedia)

Singularities are often also called singular points.
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4 Modeling and quality assurance

/ 4.3 Singularities of stresses and displacements

Example

Example: Point force

Plate in plane stress

- .
Stress 0) — |Im0'y=OO

y_x A—0

Displacement ||ImuU = o
A0 Y

Singularities of stresses and displacements indicate
a deficiency of the structural model and not of FEM!
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Example

Example: Reentrant corner

The problem c = )
y .
Stresses and strains are not defined in _n A y z 0
the corner point! 8y -
Sy =

A
Improved model |
Round corners avoid the singularity

w, =0

y
g, =0
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Modeling of plates in plane stress

Supports

» Point supports — singularity
* Rigid line supports — singularity
» Elastic supports — converging results

Singularities at supports of plates

Support Stresses Displacements
/\ yes yes
PN
yes no

/////X
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Modeling of plates in plane stress

Loads

« Point loads result in singularities

« Point loads may be defined more realistically as distributed loads

Singularities of loads

Load Stresses Displacements Load Stresses Displacements

¥
¥
¥

¥

s yes yes - yes no
N | (o)
\D yes yes N no no

- -
\_/ no no no no
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Modeling of plates in plane stress

Plate regions

Singularities of stresses Support Stresses singular for
(plane stress)
a>180°
o >180°
a>63°
Type of support free
S EE L fixed

Prof. Dr.-Ing. Horst Werkle
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Modeling of plates in bending

Support conditions moments | shear forces
a >180° a >78°
Singularities of a >90° a>51°
sectional forces
at corner points a =90 a =60
. a >95° a >52°
- Kirchhoff plate -
a >129° a >90°
a >180° a>126°
support free
conditions T~~~ simply supported
fixed
Prof. Dr.-Ing. Horst Werkle 25
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Modeling of plates in bending

Singularities of

sectional
forces

at corner points

- Mindlin-
Reissner
plate -

Support conditions Bending Shear forces > «
moments for
- o for
o > 180° o >180°
o = 180° o > 90°
o —
S
a = 180° a =>180°
S S
support  _____ free
conditions simply supported (s=soft support)
777777 fixed
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Modeling of plates in bending

Singularities at loading points — Kirchhoff plate

Displacements Sectional forces
no yes
(point A: m,, m,, d, dy)
yes yes
- pOIﬂtA (pOlnt A: mxy1 qy)
no yes
(point A: q,)

Prof. Dr.-Ing. Horst Werkle
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Dealing with singularities

Example: Point force

F
—& F '
: Stess O =— = |Imo =
y A y

A—0

In Finite Element Analysis
STRESS SINGULARITIES = HIGH LOCALIZED STRESSES

This stress can be considerably higher than the

=H= operational stress.
Applying a denser mesh around this simply leads to a
ﬂ Uy much higher stress.
Prof. Dr.-Ing. Horst Werkle 28
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Dealing with singularities

In FEA, stress singularities
are a major concern when
analyzing results, as they
may considerably  distort
results. They are also a main
cause for non-convergence of
results in adaptive meshing.

Singularities of stresses and
displacements indicate a
deficiency of the structural
model and not of FEM!
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Dealing with singularities

F
Avoiding singularities by modeling F#"
 Line or areal supports instead of point supports | y”
 Line or areal loads instead of point loads ‘

 Rounding of reentrant corners

Accepting singularities / taking them into account at the result interpretation
«  Stress results at the singularity points are physically meaningless

*  Proper interpretation of the stresses at singular points: Integrated stress values
instead of individual values

«  Steel constructions: Limiting peak stresses e.g. in re-entrant corners by
constructive measures

Applying special elements with singularities in the shape functions

Prof. Dr.-Ing. Horst Werkle 30
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Example: Plate in plane stress

Where are the points of singularities?

N
3,0
100 kN
—> -~
A A 14,0
3 A (o
y d=0,5m
3,0
X
N iy L paN paN
3,0 4,0 3,0 [m]
“k k * e
System Finite element model (e = 75 [cm])
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Example: Plate in plane stress

Where are the points of singularities?

100 kN
— + @HO®

| PRI 4
y d=0,5m T I. .
3,0
B s— + e

2
3,0 4,0 3,0 [m]

“k k L *

System Finite element model (e = 75 [cm])
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Stresses o, In section A-A for different finite element sizes

Sy [kN/m?] 3.0 Results
A 100 kN il -
- Stresses are converging in
270.9 B jA 0 the middle of section A-A.
* In the corner point the
212,0 d=05m 3,0 .
200 4 4 stresses are not converging.
=
4304 40 y 30, [m]

* In the neighbourhood of the
corner stresses are
,polluted” by the singularity.

137,3

100 Spannungen oy im Schnitt A - A

648 | e = FE-GroGe ‘ Pollution effect

« Stress resultant of the
tension stress converges
and is nearly independent of
element size.
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Example: Plate in plane stress

Stresses in the corner point versus stress resultant of the tension stresses

MODEL FE size Number of Stress o, Distance Stress resultant
e [cm] elements [KN/m?] Xo [cM] Z [kN]
150.00 2 64.8 82 13.3
HYBRID 75.00 4 137.3 66 22.6
ELEMENTS 37.50 8 212.0 64 24.9
18.75 16 270.9 64 25.6
150.00 2 27.4 52 3.6
ISOPARAMETR. 75.00 101.6 62 15.6
ELEMENTS 37.50 8 180.6 62 21.2
18.75 16 277.7 62 25.0
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Stresses in the corner point versus stress resultant of the tension stresses

Results

« Stresses are converging in the middle of

section A-A.

100 kN
—> * In the corner point the stresses are not
converging.
A ging
RN » In the neighbourhood of the corner stresses
y are ,polluted” by the singularity.

L.

A a Stress resultant of the tension stresses
converges and is nearly independent of
element size.
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Stresses in the corner point versus stress resultant of the tension stresses

Results

« Stresses are converging in the middle of

section A-A.

100 kN
—> * In the corner point the stresses are not
converging.
A ging
RN » In the neighbourhood of the corner stresses
y are ,polluted” by the singularity.

L.

A a Stress resultant of the tension stresses
converges and is nearly independent of
element size.
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Example: Skew plate in bending

10,0 q = 10KN/m? E=3-10" kN/m?
p=0,3
d=05m
\H - -
" Simply supported at all 4 sites
s
//
FE mesh 8 x 8 Principal moments
Prof. Dr.-Ing. Horst Werkle 37
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Example: Skew plate in bending

i fn My m My m m, e My e
Displacements and MODEL mm] | [kNm/m] | [kNm/m] | [kNm/m] | [kNm/m]
principal moments ,

Analytical 0.12 19.1 10.8 00 -
of the plate
Rigid supports
2 X2 0.13 18.4 12.0 3.4 2.3
4x4 0.13 20.9 13.3 7.7 0.3
8x8 0.12 18.5 10.8 14.6 1.1
16 x 16 0.12 19.9 11.5 25.9 1.6
32x 32 - - - 44.8 1.8
Elastic supports
4x4 - 21.2 12.9 6.1 0.4
8x8 - 20.0 11.8 6.6 0.1
16 x 16 - 20.3 12.0 5.6 -0.3
Prof. Dr.-Ing. Horst Werkle 38
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4 Modeling and quality assurance /4.3 Singularities of stresses and displacements

Example: Skew plate in bending

10,0 /
’t" ’c* :;
30° UV
\H\
10,0
Result

« The structural model with a rigid support has a moment singularity in
the obtuse corner.

* The structural model with an elastic rigid support has no moment
singularity in the obtuse corner. The moments do converge.

Prof. Dr.-Ing. Horst Werkle 39
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4 Modeling and quality assurance /4.4 Some pitfalls in structural modeling

Geometric modeling of simply supported plates in bending

i
/

Node position approximated Nodes exactly on a circle

A slight deviation from the circle geometry leads to a restraint effect at the edge!

Prof. Dr.-Ing. Horst Werkle 40
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4 Modeling and quality assurance /4.4 Some pitfalls in structural modeling

Connection of different types of structural elements

Plane stress elements

171

/ Beam element

/ }‘ }4
4I N f ;;/,, dr

i

{ 2 k\ d/2

: Yy X T K

Connection of beam and t \
plane stress elements x U

Rotational degree of freedom?

All degrees of freedom of both element types have to be connected.

Prof. Dr.-Ing. Horst Werkle 41
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4 Modeling and quality assurance /4.4 Some pitfalls in structural modeling

Connection of different types of structural elements

: o Plane stress elements
Very stiff artificial beam elements

//”— ///’1
1 X Beam element
/ /\ ’; h
4: 4’ \ 3 m» dj,
b i
{ ______________i\* { s kl‘ d/2
N Y Tt ,
\ N EE
\\\~‘ X \‘\\

Engineering model

All degrees of freedom of both element types have to be connected.
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4 Modeling and quality assurance /4.4 Some pitfalls in structural modeling

Connection of different types of structural elements

Very stiff artificial beam elements

4"—
7~
y

SN

-~
——

Engineering model

Plane stress elements

1 Beam element

AL T N

{

| A VAL
|

{ 2 k\ d I

All degrees of freedom of both element types have to be connected.

Prof. Dr.-Ing. Horst Werkle
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4 Modeling and quality assurance /4.4 Some pitfalls in structural modeling

Edge effect in plates in bending

Simply supported plate

Kirchhoff shear force:

Prof. Dr.-Ing. Horst Werkle 44
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4 Modeling and quality assurance /4.4 Some pitfalls in structural modeling

Edge effect in plates in bending

Free edge

Variation of the twisting
moment at the edge.

dm

Kirchhoff shear force:  Q=v_+ "
S

Shear force

The shear force at a distance which is approximately equal to the plate

thickness equals the term dm . /ds, i.e. the variation of the twisting moment.

Prof. Dr.-Ing. Horst Werkle
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4 Modeling and quality assurance /4.4 Some pitfalls in structural modeling

Edge effect in plates in bending

Finite element analysis

The section forces at the edges of a plate — in a distance which is approximately

equal to the plate thickness from the edge — reflect the edge effect.

Thin plate with shear stiff elements (Kirchhoff plate theory)

Shear forces and twisting moments at a simply supported edge and a free edge
reflect the edge effect, i.e. shear forces are not equal to the support reaction,
twisting moments are not equal zero.

Thick plate with shear flexible elements (Reissner-Mindlin plate theory)

Shear forces and twisting moments at a simply supported edge and a free edge do
not reflect the edge effect, if finite elements near the edge are very small, i.e. not
larger than 1/5 of the plate thickness.
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Interpretation of the results

Output points for sectional forces and stresses

In the middle of the elements or in the integration points.

In the nodal points by averaging of the element stresses of the
adjacent elements.

at an arbitrary point of the finite element mesh by interpolation of
the values at the element centres or at the nodal points.
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Interpretation of the results

Nodal stresses and section forces

No averaging

Averaging from 2 elements

> Averaging from 4 elements

~

Nodal stresses are computed by averaging the element stresses at the node.

The more nodes are used the better the result.

4 elements: good / 2 elements: acceptable / 1 element: no averaging
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Interpretation of the results

Output points for sectional forces and stresses

i
> 7 N
P ):
v A / y \
/S / L \
_

sectional forces averaged
at the node7

stresses averaged
at the nodes

Jumps of sectional forces and stresses in plate structures
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Error estimation and adaptive meshing

Discretization error: Error caused by the approximation of the exact

displacements by shape functions.
L u(FE) B u(exakt)

Global error: Discretization error of the total system — energy norm.

Locale error: Discretization error of sectional forces and displacements at
individual points.

Error estimation: Upper limit of the error (proved mathematically).

Methods for the estimation of the global error are available.

The local error cannot be estimated efficiently so far.

Example

Prof. Dr.-Ing. Horst Werkle 50
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Error estimation and adaptive meshing

Error estimation according to Zienkiewicz/Zhu

Step 1: Smoothing of stress distribution

Simplified smoothing of stresses:
» Averaging of the element stresses at the nodes 0
* Linear interpolation between the nodes

~ volume balance

Step 2: Error estimation

e, =0 *-0fE

o*
i FE k

. oA
o* = improved stresses acc. to step 1
o E = stresses in the finite element o >
Step 3: Mean error in the element ve

[(o*~0™)%dA
A

A=elementarea (y = | .] for rectangular plane stress element

l&s]=a-

Prof. Dr.-Ing. Horst Werkle
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Error estimation and adaptive meshing

Error estimation according to Zienkiewicz/Zhu

Example: Errorin element 3

L © [kN/cm?]
1,0 L

[(c*~67)*dA
ofrn 1 | 2 p

Stress o*(x) and beam height h(x)
at the integration points:

X=276.4cm h=27.89 cm o*=0.383 kN/cm?
Xx=348.6 cm h=22.11 cm o* =0.494 kN/cm?2

Error: Computation  Gauss
—_— 2. —_— 2- . .
e :1'1'\/[(0.383 0.400) -27.89+(0.494-0.400) -22.11]-125-0.5 007
3125
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Error estimation and adaptive meshing

Example: Truss element with linearly varying cross section area

Shape Number X [cm]
functions of 0 125 250 375 500
elements
linear 0.333 - 0.333 - 0.333
2 0.250 0.250 0.250/0.500 0.500 0.500
4 0.222 0.222/0.286 | 0.286/0.400 | 0.400/0.667 0.667
guadratic 1 0.130 - 0.391 - 0.652
2 0.191 0.255 0.319/0.273 0.545 0.818
4 0.198 0.248/0.247 | 0.329/0.324 | 0.486/0.462 0.923
exact - 0.200 0.250 0.333 0.500 1.000
Element stresses in the example [kN/cm?]
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Error estimation and adaptive meshing

Error estimation according to Zienkiewicz/Zhu

4 o [kN/m2]
[ / Result
4 The local accuracy of a finite element analysis is
—— given by the error estimator. A mathematically
. exact error bound, however, cannot be expected.
STRESS OUTPUT POINT x [cm]
0 125 250 375 500
Element 0.222 0.286 0.400 0.667
Node 0.222 0.254 0.343 0.534 0.667
lle,ll 0.014 0.025 0.070 0.114
Node and element stresses Error of FEM solution
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Error estimation and adaptive meshing

Adaptive meshing

In an adaptive
meshing the
finite element
net is refined
where the local
error is large.

A

D=

Example of an adaptive meshing
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Controlling of finite element computations

Controlling strategy for FE results

First check: Overview of the results
- Checking the plausibility of the displacements (graphical)
- Qualitative assessment of the distribution of sectional forces and stresses

- Check of the sum of loads of all load cases

Final check: Checking the details
- Checking all input data for structural analysis in detalil
- Approximate calculation of significant values of sectional forces and

displacements (by hand).

Prof. Dr.-Ing. Horst Werkle
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Controlling of finite element computations

A Finite Element Analysis should be part of the

guality assurance process in an Engineering project.

ality ASS
ims of QU ieve formed
dincipal & - 10 be achie pe perfo
Three P ion of Wh t is 10 oS tnat eed 10 - and
a clear gefin clivitie and fun® of thos€e aclivitie
a e
description foe itoring f the Peﬁormanc
i
| and MonN
the contro
fUan\OnS
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Gauss integration

Integration order n

X+ dx

Formula

[ £ dc=YrfC) @

Ax

Location of integration
points 7 = 7; and § = Si in
plane finite elements

2-point integration

f(x)
A f(x) /..--—O—-—"‘
=== I

X tAx

J f(x)ax =
) Ax

I |
flx,) f(xa) (@ f ) +anf(x))—
| I
d a o, =1 a, =1
rl-h.

Axj2 |, Ax/2 £ =1/3~0577 ~ A

« Ax R o .
A ‘ N }
=2, a=¢& Ax 3rd degree polynomial I
is integrated exactly J
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Error estimation and adaptive meshing

. o|lkN/cmz2]
1.0 - oE

Averaged - _
nodal stresses 05 | o* 0.343 Jf? Element 3:

1 2 "3 4 ™~
l =
| — |
|~
Nodal stresses at the . OoF [kN/CmZ] - T N
o 4 I S|o
Gauss points in 1.0 . | LI
element 3 08 38
0.5 | 33 oF - l
0,
}%‘v
1.25
Element area: A = [h(x) dx =0.5-(0.221+0.279)-1.25=0.3125 |[m?]
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4 Modeling and quality assurance /4.5 Quality assurance of FE analyses

Error estimation and adaptive meshing

Example: Truss element with linearly varying cross section area

Shape Number X [cm]
functions of 0 125 250 375 500
elements
linear 1 0.133 - 0 - 0.667
2 0.050 0 0.083/0.167 0 0.500
4 0.022 | 0.028/0.036 | 0.047/0.067 | 0.100/0.167 | 0.333
quadratic 0.070 - 0.058 - 0.348
2 0.009 0.005 0.014/0.060 0.045 0.182
0.002 | 0.002/0.003 | 0.004/0.009 | 0.014/0.038 | 0.077
Error in the element stresses in the example [kN/cm?]
Maximum stress: 1 [kKN/cm?]
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Error estimation and adaptive meshing

Truss element with variable A ulcm]
cross section area & T
0,1 -
X
0,0 - - T - —
0 100 200 300 400 500
4 elements - linear
Displace
Parameters A G [kN/cm?]
1,0 4 X
A; =500 cm? /
A, =100 cm? 0,5 //
E = 1000 kN/cm? ———«r‘K
X
F =100 kN o0 L o &
0 100 200 300 400 500
4 elements - linear o
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